
ÆEvery

Aw
ar

e

Project no. 265432

EveryAware

Enhance Environmental Awareness
through Social Information Technologies

http://www.everyaware.eu

Seventh Framework Programme (FP7)

Future and Emerging Technologies of the Information Communication Technologies
(ICT FET Open)

D2.2: Final version and report on the web-based
infrastructure

Period covered: from 01/09/2012 to 28/02/2014 Date of preparation: 28/02/2014
Start date of project: March 1st, 2011 Duration: 36 months
Due date of deliverable: Apr 30th, 2014 Actual submission date: Apr 30th, 2014
Distribution: Public Status: Draft

Project coordinator: Vittorio Loreto
Project coordinator organisation name: Fondazione ISI, Turin, Italy (ISI)
Lead contractor for this deliverable: Gottfried Wilhelm Leibniz Universität Hannover
(LUH)

2014 c© Copyright lies with the respective authors and their institutions



Page 2 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Executive Summary

In order to pave the way towards behavioral shifts within large citizen populations, methods and
techniques of acquiring and handling data play a central role. The design of web-based infrastruc-
tures for this purpose has a great influence both on data quantity and quality, and hence also on the
additional value which can be generated by analyzing the resulting datasets. Typical goals during
the design process are correctness and performance of the system, as well as easy management
and reuse.

The data in the context of the EveryAware project can be divided into two classes, namely (i)
objective data, which stems mainly from sensors and captures things like sound intensity or gas
concentration, and (ii) subjective data which comprises reactions of humans faced with particular
environmental conditions. The EveryAware platform has been explicitly designed to support sub-
jective impressions in conjunction with sensor data acquisition by introducing an extendable data
concept. A central server efficiently collects, analyzes and visualizes data sent from the arbitrary
sources. The platform offers a highly flexible way to store and exchange data for Internet of Things
applications. A wide variety of meta, location, and content information which can be attached to
any data point, a flexible data processor component as well as an efficient storage structure are
the keys to this task. This mechanism provides the unique ability to enrich data with contextual
information explicitly including subjective impressions.

Additional to this data collection infrastructure, a gaming platform called Experimental Tribe (XTribe)
has been developed focusing on collecting even more subjective data. XTribe is a platform for web-
based experiments and social computation. Its goal is to allow researchers to realize their own
experiments with minimal efforts, leading towards the Web as a “laboratory” to perform studies.
The core idea behind XTribe is to offer a set of readily useable standard components, which are
used within a great bandwidth of different experiments.

Outline of the document

After a brief overview of the subject in Chapter 1, in Chapter 2, we start by describing how the
EveryAware system handles the combination of objective and subjective data on a conceptual
level by introducing several key data modeling concepts and continue with an overview of the
storage and processing framework on a technical level. In Chapter 3 we introduce the REST API
which is responsible for setting up interface to and from external services. In Chapter 4 we give an
overview of the web interface including a connection to social platforms like Twitter1 or Facebook2

and several global as well as personalized interactive visualizations. The final Chapter 5 focusses
on the X-Tribe platform for gaming, a well-established way to engage humans in experiments.

1https://twitter.com
2https://facebook.com

ÆEvery

Aw
ar

e

https://twitter.com
https://facebook.com


D2.2: Final version and report on the web-based infrastructure Page 3 of 36

Dissemination of the Results

This Deliverable 2.2 can be considered as the continuation of Deliverable D2.1 where the first
version of the EveryAware platform has been introduced. The platform was extended continuously,
especially in order to support the large amount of visualization demands imposed by the case
studies and demos. Two main applications where hosted by the EveryAware platform during the
project, namely AirProbe and WideNoise Plus. Their capabilities have been presented to the
scientific community in several articles [Atzmueller et al., 2012, 2014; Becker et al., 2013b]. Other
applications are currently being developed.

The platforms are online accessible at http://airprobe.eu/ and http://widenoise.eu/, resp.
The smartphone apps are available in Google Play34 and Apple Store5.

The data from the WideNoise Plus application were thoroughly analysed and published in sev-
eral articles [Atzmueller and Mueller, 2013; Becker et al., 2013a], while the study carried on the
AirProbe data will be submitted soon to an international peer-reviewed journal (PLOS ONE).

The case studies supported by the EveryAware platform include but are not limited to several com-
munity projects around Heathrow Airport in the WideNoise Plus context and the APIC International
Challenge as well as a school project in the AirProbe context. The APIC International Challenge
is online accessible at http://www.everyaware.eu/APIC/.

The details about the XTribe platform hosting the web-based experiment part of the AirProbe In-
ternational Challenge were presented to an international conference and published as proceeding
[Caminiti et al., 2013]. The XTribe platform is online accessible at http://xtribe.eu/.

3https://play.google.com/store/apps/details?id=eu.everyaware.widenoise.android
4https://play.google.com/store/apps/details?id=org.csp.everyaware
5https://itunes.apple.com/app/id657693514

2014 c© Copyright lies with the respective authors and their institutions

http://airprobe.eu/
http://widenoise.eu/
http://www.everyaware.eu/APIC/
http://xtribe.eu/
https://play.google.com/store/apps/details?id=eu.everyaware.widenoise.android
https://play.google.com/store/apps/details?id=org.csp.everyaware
https://itunes.apple.com/app/id657693514


Page 4 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Contents

1 Overview 6

2 Architecture 8
2.1 Conceptual Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Implementation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Data Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 REST API 16

4 Web Interface 18
4.1 AirProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 WideNoise Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 The Experimental Tribe gaming platform 27
5.1 Large scale experiment testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Integration with other platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 The AirProbe International Challenge web game . . . . . . . . . . . . . . . . . . . 29

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.2 The challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Game Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.1 Revenue and feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Design Issues and possible future solutions . . . . . . . . . . . . . . . . . . 32

5.4.3 Ranks and prizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.1 Revenue computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 5 of 36

List of Figures

2.1 Overview of the core concepts of EveryAware architecture. . . . . . . . . . . . . . 9

2.2 General data flow of the EveryAware architecture. Columns represent logical nodes
(i.e. may be located on one or several machines). Circles are web servers, cylinders
are databases and stars are data processors. The master database has a grey
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Architecture of the data processor. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Outline of the spatial object cache concept. . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Basic resources of the REST API. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Data endpoints for accessing packet, WideNoise Plus and AirProbe data points. . . 16

3.3 Statistics endpoints for accessing currently active AirProbe devices and for access-
ing user session information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Endpoint to acquire OAUTH2 access token. . . . . . . . . . . . . . . . . . . . . . 17

3.5 URL to access TMS (a variant of WMS) formatted heatmap tiles of collectively
recorded air quality data from AirProbe and a URL to query KML formatted clus-
ters of WideNoise Plus data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 EveryAware functionality for sharing content on Twitter. . . . . . . . . . . . . . . . 19

4.2 Adding filtered social content (Tweets) to objective data (AirProbe air quality mea-
surements). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 A screenshot of the map page of AirProbe. The left side shows the cluster view, the
right side shows the grid view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 A screenshot of heatmap on the map page of AirProbe. . . . . . . . . . . . . . . . 22

4.5 Personal session visualizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 APIC ranking visualizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 WideNoise Plus statistics pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Screenshot of the WideNoise Plus map page. . . . . . . . . . . . . . . . . . . . . 26

5.1 Screenshots of the CityRace interface, during the AMT code retrieval. . . . . . . . . 28

5.2 In green the game areas and in blue the measurements areas for the four cities.The
grid represents the tiles division for the web game. From the top left to the bottom
right: Antwerp, Kassel, London and Turin. . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Screenshots of the game interface, with indication of the main entity and tools. . . . 31

2014 c© Copyright lies with the respective authors and their institutions



Page 6 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 1

Overview

A characteristic of social information technologies as they are used within the EveryAware project
is that they often involve very large amounts of data. In fact, the collection, storage and analysis of
different kinds of data within these systems is a crucial point and also an asset, e.g., for companies
like Facebook1. As a consequence, in order to pave the way towards behavioral shifts within large
citizen populations, methods and techniques of acquiring and handling data play a central role. The
design of web-based infrastructures for this purpose has a great influence both on data quantity
and quality, and hence also on the additional value which can be generated by analyzing the
resulting datasets. Typical goals during the design process are:

• Performance: Because the involvement of large numbers of humans requires responsive
interfaces and efficient server backends, all infrastructures must be carefully tuned for high-
performance requirements of processing large amounts of data in a parallel fashion.

• Management: The setup and technical realization of experiments and studies among citi-
zens often implies strong efforts on the side of scientists and experimenters. As a conse-
quence, it is desirable to provide reusable and configurable experimentation platforms which
can easily be managed.

• Correctness: A large-scale collection of data can hardly be expected to provide only correct
and consistent results. However, the reduction of noise from the very beginning (i.e., the
concrete measurements) is desirable in order to provide a better basis for later analysis.

Broadly speaking, the relevant data in the context of the EveryAware project can be divided into
two classes, namely (i) objective data, which stems mainly from sensors and captures things like
sound intensity or gas concentration, and (ii) subjective data which comprises reactions of humans
faced with particular environmental conditions.

The EveryAware platform has been explicitly designed to support subjective impressions in con-
junction with sensor data acquisition by introducing an extendable data concept. A central server
efficiently collects, analyzes and visualizes data sent from the arbitrary sources. The platform of-
fers a highly flexible way to store and exchange data for Internet of Things applications. A wide
variety of meta, location, and content information which can be attached to any data point, a flexible
data processor component as well as an efficient storage structure are the keys to this task. This
mechanism provides the unique ability to enrich data with contextual information explicitly including
subjective impressions. Different collection concepts like sessions to represent time-interval-based
entities and feeds to organize data points in a continuous way allow to further introduce semantic
relations. This enables the web interface to provide different semantically enriched views on the
data aggregating data globally as well as on a personal level. Additional to this data collection

1http://www.facebook.com

ÆEvery

Aw
ar

e

http://www.facebook.com


D2.2: Final version and report on the web-based infrastructure Page 7 of 36

infrastructure, a gaming platform, called XTribe has been developed focusing on collection even
more subjective data.

In Chapter 2, we start by describing how the EveryAware system handles the combination of objec-
tive and subjective data on a conceptual level by introducing several key data modeling concepts.
We continue with describing the technical details necessary to implement a highly efficient and
distributed system including database setup as well as data processor components. The resulting
system can be seen as the primary data backend for most of the applications developed within the
EveryAware project.

In Chapter 3 we introduce the REST API which is responsible for setting up interface to and from
external services. Smartphone applications as well as the web frontend use these interfaces to
comminute with the platform in order to store and retrieve data as well as semantically enriched
aggregations and statistics.

In Chapter 4 we give an overview of the web interface including several global as well as person-
alized interactive visualizations. We provide semantically enriched data to the users by utilizing a
data collection process which emphasizes the use of social interaction. This includes a connection
to social platforms like Twitter2 or Facebook3.

The final Chapter 5 shifts perspective and focusses solely on subjective data, more precisely on
gaming as a well-established way to engage humans in experiments. Although the idea of crowd-
sourcing is already implemented in systems like Amazons Mechanical Turk, the design of social
games requires more complex interfaces which are hardly realizable in current implementations.
For this purpose, we introduce Experimental Tribe or XTribe, a platform for web-based experi-
ments and social computation. Its goal is to allow researchers to realize their own experiments
with minimal efforts, leading towards the Web as a “laboratory” to perform studies.

The core idea behind XTribe is to offer a set of readily useable standard components, which are
used within a great bandwidth of different experiments. Those include e.g., user handling, interface
hosting or security issues. Similar to the data storage architecture, it has a modular structure,
which allows the researcher to focus on his core questions by hiding away most of the complexity
associated with running a web-based experiment. On the other hand, it is furthermore intended to
serve as a “basin of attraction” for people willing to participate in experiments.

In summary, the data storage system, the corresponding API and web interface together with the
gaming platform are the main components of the EveryAware web-based infrastructure, which
complement each other by addressing specific goals in the context of collecting, storing and ana-
lyzing relevant environmental data.

2https://twitter.com
3https://facebook.com

2014 c© Copyright lies with the respective authors and their institutions

https://twitter.com
https://facebook.com


Page 8 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 2

Architecture

The platform has been designed to facilitate the combination of sensing technologies, networking
applications and data processing tools. This enables users to collect and visualize environmental
information and at the same time augment the collected data with arbitrary information explicitly
supporting subjective context. Additionally the data processing engine allows for the application of
dedicated data mining and knowledge discovery algorithms in order to fully exploit the synergies
of a central data storage and the wide variety of objective and subjective information. Our plat-
form is based on the framework introduced in [Becker et al., 2013b] and extends it to provide the
functionality needed for our case studies.

The platform comprises two main layers. The conceptual layer defines the basic entities and fea-
tures the EveryAware system supports. It introduces an innovative framework to collect, process
and retrieve data and features straight forward usability, flexible access control as well as a pow-
erful data extension mechanism. The implementation layer introduces the data storage layout as
well as the data processor. Both ensure high availability as well as generic data handling and pro-
cessing and enable advanced processing methods inferring missing data or learning approaches
for extracting information from the raw data resulting in higher level semantic information. The
conceptual and the implementation layer are described in the following.

2.1 Conceptual Layer

The conceptual layer defines the basic entities and features the EveryAware system supports. The
core concepts are data points with descriptions, sessions and feeds. Data points and sessions can
be extended by other data points. Single data points can be claimed by users, i.e., the user can
claim ownership. Feeds are access restricted and can define visibility levels. See Figure 2.1 for an
overview.

The basic entities of the EveryAware system are data points. Each data point consists of a set of
fixed description attributes in addition to the actual data. These attributes ensure the processability
as well as dynamic querying of arbitrary content including binary data like photos or videos. The
description attributes are divided into three categories:

1. Meta attributes are attributes which allow to keep track of data independent information like
received time, recording time, device ID, session ID, etc.

2. Geo attributes make it possible to record the location of the sample being taken including
longitude and latitude as well as accuracy and the provider of the location fix.

3. Content attributes describe the content and its format. They help the system to further
process the data. These attributes include the data type (e.g., air, noise, image) and format
(e.g., JSON, XML, PNG).

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 9 of 36

Access &
Visibility

Feed

Extension

Claiming

Session

Data
Point

Figure 2.1: Overview of the core concepts of EveryAware architecture.

Sessions are collections of data points limited to a fixed timespan. Sessions allow to introduce
semantic entities such as “my way to work” or “a stroll in the park”.

Data points as well as sessions can be extended with additional information using other data
points. This makes the data representation very flexible and inherently support the augmentation
of objective data with a semantic context. One application is tagging. Sessions and data points
can be tagged by extending them using tag data points referring to the respective data point or
session IDs to be tagged. Tagging is not only restricted to actual text-tags but can be any kind of
data including videos, sound files or air quality measurement. Using this scheme, it is also possible
to update data points as well as sessions after they have been sent without losing the original data.
Since no raw data is deleted, this also allows to always access the version history of a data point.

Data points can be organized in feeds. A data point is always part of the global feed, but can
also be pushed into several other feeds. Users can contribute to existing feeds or create their own
feeds. While useful for organizing data points, feeds also allow to attach data points to real world
entities such as major events like music festivals, places like the Eiffel Tower or portable things like
a smartphone. Feeds can be access restricted and a visibility level can be specified for each data
point in a feed.

Feeds can be open or closed concerning read and write access, where write access refers to the
possibility of adding new data points to a feed. Open feeds are accessible by everyone including
anonymous users. Closed feeds are only accessible by a limited set of users (members). The
global feed is always open for read and write access. It contains all data points without exception.
The access restriction allows users to create feeds and share them with friends or other interested
users without making their data publicly available.

Since privacy is an issue and users may want to contribute in different ways to the collected data
and corresponding statistics which might be derived from it, the EveryAware system introduces
visibility levels for each data point in a feed. This is particularly important since all data points are
part of the global feed. There are four visibility levels:

1. details allows everyone who has access to the feed to see the raw content as well as the
description attributes of the data point.

2. statistics restricts the data point to be considered in user statistics derived from the data
points in the feed, e.g., average values for the corresponding user.

3. anonymous restricts the data point to only be considered in overall statistics derived from
the data points in the feed, e.g., average values for an area or timespan. No association with
the user is possible.

4. none allows only the owner of the data point to access the data point and its description
attributes.

2014 c© Copyright lies with the respective authors and their institutions



Page 10 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Claiming is a concept which allows anonymous contribution to the EveryAware system while giv-
ing the user possibility to claim data points as soon as she decides to register a user account.
This makes it convenient to contribute data to the EveryAware system and provides some level of
anonymity since no previous registration process is required. At the same time the collected data
is not lost for the user but can be accessed at a later time. Claiming works by exploiting the device
ID, which is usually sent as part of a store request. If a registered user sends a data point with a
device ID, she can claim all data points she has sent before with the same device ID.

2.2 Implementation Layer

The implementation layer realizes the the conceptual layer based on an advanced storage and
application structure. This structure consists of several components:

• the storage itself,

• web application components for handling data endpoints receive and retrieve data, as well
as a

• data processor component which processes and semantically enhances incoming data.

Currently the storage layer is based on MySQL1. MySQL supports geo-data enabling efficient
storage and retrieval of spatial data points. Storage is organized as a pipeline enabling a distributed
manner of storing, processing and accessing the data. A more detailed description of the pipeline
is given in the next sections.

The web application is implemented within the Servlet container Apache Tomcat and is based on
the Spring MVC Framework2. Thus, the underlying storage structure is easily interchangeable
by utilizing the Inversion of Control paradigm. Furthermore the Spring Social module allows to
easily and modularly add connectors to many a set of social services such as Facebook, Twitter
or LinkedIn. Currently, the web application focuses on Twitter and Facebook allowing to share
different content of the web page.

The web application is also responsible for providing several REST endpoints as described in
Chapter 3. Those REST endpoints allow to upload data to the EveryAware platform (for example
using the WideNoise or the AirProbe application) and provide several possibilities to retrieve the
uploaded data itself as well as several statistics, summaries and higher level semantic information
(see Chapter 3 and Chapter 4). At the same time a more raw yet also a more detailed version of
the data is provided to the Consortium via an SQL dump.

The data processor has several components. The main component is responsible for cleaning,
processing and enhancing incoming data in real time. Thus this is considered the real time com-
ponent. Building upon the data provided by real time component are the batch components. The
batch components are responsible further higher level semantic information such as grids and
clusters or heatmaps which are more time consuming to calculate.

In the following sections, we will elaborate on the data pipeline used to efficiently store and process
data in a distributed manner and then go into more detail about the data processor.

2.2.1 Data Pipeline

The data pipeline of the EveryAware platform is designed to store large amounts of data and pro-
vide highly available, responsive storage and query capabilities. Highly available, responsive end-

1http://www.mysql.org
2http://spring.io

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 11 of 36

...

...

(a) Clients write data to one of the
web applications which is then stored
locally.

...

...

(b) Local data processors read data
from local databases and write re-
sults to the master database.

...

...

(c) Data is replicated from the master
database to client databases.

...

...

(d) Clients access one of the web
application to read data from a local
database.

Figure 2.2: General data flow of the EveryAware architecture. Columns represent logical nodes
(i.e. may be located on one or several machines). Circles are web servers, cylinders are databases
and stars are data processors. The master database has a grey background.

points minimize data loss and enable our web application to provide a real-time user experience.
The general structure of the pipeline is visualized in Figure 2.2.

The pipeline is divided into several logical nodes. There is one master node and several slave
nodes. Each node consists of a web server, a local database and a data processor. The web
server hosts different components of the EveryAware infrastructure. There are three components:
write endpoints, read endpoints and a web application providing a user interface. In general, clients
can read and write to any node (except if certain nodes are dedicated to certain tasks, like only
serving REST endpoints for reading but not for writing), see Figures 2.2(d) and 2.2(a). On slave
nodes the local database is a replication of the master node’s database used for read access
only. There is also a local data cache for data which is written to the slave node. The local cache
is then read by the local data processor, processed and the saved to the master database, see
Figure 2.2(b). The data processor component is described in detail in Section 2.2.2. Finally, the
replication mechanism will distribute the new data to the slave nodes’ databases 2.2(c).

This method allows to distribute workload between several machines, thus, enabling a highly avail-

2014 c© Copyright lies with the respective authors and their institutions



Page 12 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

able, responsive system. Note, that the described nodes are logical nodes. Workload can further
be distributed by splitting logical nodes into a web application, a database and a data proces-
sor component. The web application can further be split into several components as mentioned
above. Also, the database itself is not restricted to a database hosted on a single node but may be
distributed itself enabling further workload distribution.

2.2.2 Data Processor

The data processor is responsible for parsing the received data, resolving extensions, apply knowl-
edge discover processing steps, and augmenting them with additional semantic information from
various sources.

Overview

The most important responsibility of our data collection platform is to reliably store the received
data points. To ensure this, the storing procedure itself keeps computational overhead such as
syntactic checks and other processing at a minimum. The received data is directly written to the
input table. Only afterwards will the data processor start parsing, verifying and enhancing the
stored data using a modularized approach. This gives us the following advantages:

• High performance and availability : Any computation in the endpoint would slow down the
data reception. This is particular true for applications with large content and high transmis-
sion frequencies.

• Flexibility : We can accept literally any data, since the endpoint does not restrict the type of
data sent via the REST API. Different data types are handled by a dynamically manageable
set of processing modules.

• Robustness: Storing and keeping the data in its raw form enables us to recreate the pro-
cessed content at any point in time.

In the second step, the data processor post-processes the data. Figure 2.3 shows the general
architecture. The data processor reads data from the input table and combines it with information
about ownership. Data is then parsed, interpreted and augmented using a chain of processing
modules. This includes applying knowledge discovery steps in order to gain more insights about
the data. The resulting information is stored in the so called content tables which are query-able
from data access endpoints.

A special content table is the output table where all incoming data is stored in its raw format
without applying advanced processing steps. The stored data includes any description attributes
like location or visibility information. This allows for accessing any sent data even if not data
processor module exists which is able to parse a specific data type.

This division of input and access storage enables support for replication of the input and output
endpoints of the REST API. At the same time distributed processing of large amounts of incoming
data is possible. In order to keep processing synchronized, the data processor sets a processing
state for each processed data point based on the processing result (e.g., success or error).

Processing Procedure

The data processor constantly checks for data which needs processing: new data and data that
should be updated. After retrieving the data to process, the data processor runs through its differ-
ent components: the module selector, the selected processing module and the storage handler.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 13 of 36

Output

Content

Semantics

Read Data

Update State

Write Data

Ownership

Input

Data Processor

Module
Selector

Storage
Handler

Processing

Figure 2.3: Architecture of the data processor.

The module selector selects a processing module from a priority-chain. The matching module is
selected based on its data type defined by the descriptions attributes or by deriving the data type
from the content.

The second component is a selected processing module. It extracts the actual data from the
raw content (e.g., JSON) and possibly augments the data with additional information, calculates
statistics, or handles missing information.

Then, the storage handler stores the resulting data in dedicated content tables, the output ta-
ble, and possibly semantics tables. After the storage engine has finished writing the data to the
corresponding tables, it adjusts the processing state of the data in the input table.

This architecture has several advantages. The priority-chain-approach in the module selector al-
lows for flexibility in extending the data processor with additional processing modules on demand.
The modularized approach in general makes it easy to deploy updates without risking to break the
existing data.

The processing state set by storage handler for each processed data point is the key to flexible
module extensions and ensures robustness against processing failures: Assuming a processing
module is updated, the processing state of the corresponding data is reset. The data processor
will then re-process only those marked data.

Processing Modules

There are several modules implemented for processing data. In this section we will highlight the
AirProbe processing module which processes the data coming from the AirProbe Android applica-
tion collecting from samples from corresponding sensor boxes.

One important feature of the AirProbe module is the calculation of a black carbon (BC) value
which is not observed directly. The BC value is derived from a variety of sensor readings origi-
nating from the sensor box. These sensor readings include NO2, CO, V OC, O3, humidity and
temperature. In order to derive the BC value from these readings, a calibration model based on
neural networks has been trained as further reported in Deliverable 1.2. This model represents a
powerful learning approach and helps to further increase accuracy over time as more and more
samples are recorded and aligned to BC values recorded by highly accurate reference meters.
The AirProbe module utilizes this model to enrich the AirProbe data it receives with BC values.

Note that the calibration model is very location dependent. A separate module had to be trained

2014 c© Copyright lies with the respective authors and their institutions



Page 14 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

for each city participating in our large scale case studies. Thus, it is important to associate location
information with each of the recorded samples. Unfortunately, the sensor box as well as the smart-
phone might not be able to provide such a location. The AirProbe module, just like a few other
modules (e.g. the WideNoise Plus module), provide the functionality to infer locations based on IP
addresses. Since data is usually sent live via an internet connection, each sample is associated
with an IP address. Consequently for each sample which does not contain location information,
the module will contact a provider which maps IPs to locations and fills in the missing location
information of a sample.

Batch Components

As mentioned earlier the batch components of the data processor are responsible to calculate
further higher level semantic information. This includes for example grids and clusters or heatmaps.
Those are time consuming to calculate. There are two main components which will be introduced
in this section: the cluster component and the heatmap component.

Cluster Component One of the main features of the web interface is the measurement visu-
alization on a map. In order to motivate the users to explore the collected data and share more
of their own, it is essential to provide the best possible user experience when browsing on the
map. Aggregation into clusters and grid cells representing higher level semantic information is one
way to allow a quick overview on large amounts of data at first glance. Since data is coming in
constantly clusters and grids keep evolving. Thus, the discovered clusters will have to be recom-
puted or already existing clusters need to be updated depending on the learning approach used
for clustering.

The clusters are computed on the server and only the aggregated cluster information is transmitted
to the client in order to keep things as responsive as possible. However, the aggregation has to
be computed for each request (for different viewports, zoom levels, etc.) separately. This is time-
consuming, especially as the amount of data increases with continuously recorded measurements.

In order to provide cluster or grid data as fast as possible, our solution is to aggregate data for
possible requests beforehand. The aggregated data is stored as a collection of spatial objects.
These collections are queried instead of calculating aggregations for each request on the fly.

This spatial caching mechanism is outlined in Figure Figure 2.4. For an incoming request, first
a spatial object collection is selected based on certain meta attributes. Then the spatial objects
within the specified longitude-latitude bounds are retrieved.

Spatial objects are stored in the data table. Each object is described by a collection id, an object id,
a longitude-latitude pair and some object specific information such as sensor values or associated
tags. The meta attributes of a spatial object collection are stored in the meta table and are used to
retrieve the stored collections. These attributes are:

• Data type: Distinguishes collections of different nature.

• Spatial type: Distinguishes collections by their spatial properties like clusters, grids or tracks.

• Sub type: Distinguishes sub-collections representing the same samples but different corre-
sponding data. This allows to dynamically load additional information about spatial objects
after transmitting the initial data given an object id.

• Zoom level : Spatial objects are aggregated values. Those values are aggregated differently
for each zoom level defined by the map.

Using this spatial object cache we are now running batch jobs on our data in order to update the
spatial collections regularly. The rendering time of large clusters was reduced from several minutes

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 15 of 36

DataType:     
air

SpatialType: 
cluster
  

SubType:      
sensor_data
  

ZoomLevel:

...

cluster data
- O2 = 2.5
- NO2 = 1.5
- ...

cluster data
- O2 = 1.3
- NO2 = 0.9
- ...

Meta Table Data Table

{Spatial 
Object
Collection

}Z
o
o
m

 Le
v
e
ls

longitude

latitu
de

Figure 2.4: Outline of the spatial object cache concept.

to a fraction of a second. This enabled a smooth visualization of large amounts of data on the map.
Currently we are running an incremental clustering algorithm, thus, clusters are also updated in
real-time.

Heatmap Component We are using heatmaps to provide a collective view on the air quality data
recorded by the AirProbe application Figure 4.4. A custom interpolation scheme based on radial
basis functions is used in order to account for missing data resulting in a smooth visualization of
the collected samples. The heatmap component calculates image tiles needed for the OpenLayers
visualization (see Chapter 3 for more information) for each zoom level by first aggregating samples
into a grid of pixels and the applying the interpolation method to generate a smooth surface. The
result is served to the public as well as individual users via a Tile Map Service (TMS).

2014 c© Copyright lies with the respective authors and their institutions



Page 16 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 3

REST API

The API provided by the EveryAware platform uses the REST protocol (representational state
transfer), which is widely adopted by Internet of Things platforms like Xively1 or ThingSpeak2.
Thus, we focused on REST in order to make our API as simple as possible for our users.

The REST API has been largely redesigned since the last deliverable to support more flexible
usage and a clearer structure (though the API from the last deliverable is still mostly available).
There are three main components of the general API: the data endpoint for receiving packets of
data, the endpoints to retrieve data points themselves and the endpoints for retrieving statistics
and higher level information derived from the data points. See Figure 3.1 for the resource paths.

(POST) /api/v1/packets
(GET) /api/v1/data/**
(GET) /api/v1/statistics/**

Figure 3.1: Basic resources of the REST API.

The packets endpoint allows to write data to the system. The posted content can be any textual
input. There are several meta-attributes which are supported by the EveryAware system natively in
order to support data processing and controlled querying without understanding the content itself.
Meta-attributes include, but are limited to: data type and format, recording time, location data, or
feed and visibility information.

The data endpoint enables access to the data. There are several query parameters based on
the meta-attributes which can narrow down the data selection. The most general data endpoint
is the packet endpoint which allows to access any textual input sent to the packets endpoint.
Also, there are several specific data types supported natively: WideNoise Plus data which repre-
sents data sent by the WideNoise Plus application, or AirProbe data which data points sent by the
AirProbe application. See Figure 3.2 for examples.

(GET) /api/v1/data/packet
(GET) /api/v1/data/widenoise
(GET) /api/v1/data/airprobe

Figure 3.2: Data endpoints for accessing packet, WideNoise Plus and AirProbe data points.

The statistics endpoint is used to serve statistics and higher level semantic data based on
the data sent to the packets endpoint. Some examples are the number of active devices or

1http://www.xively.com
2http://thingspeak.com

ÆEvery

Aw
ar

e

http://www.xively.com
http://thingspeak.com


D2.2: Final version and report on the web-based infrastructure Page 17 of 36

summaries of user sessions. See Figure 3.3 for examples.

(GET) /api/v1/statistics/data/airprobe/activedevices
(GET) /api/v1/statistics/sessions

Figure 3.3: Statistics endpoints for accessing currently active AirProbe devices and for accessing
user session information.

An important feature of the API is the security policy. We have adopted the OAUTH23 protocol for
authentication and authorization. Thus, calls to the API are authorized by using so called access
tokens. These tokens can be acquired via the token endpoint (see Figure 3.4).

/oauth/token

Figure 3.4: Endpoint to acquire OAUTH2 access token.

The smartphone applications are using these endpoints to communicate with the EveryAware
platform. They are first acquiring an OAUTH2 access token. Then they send data via the packets
endpoints. And finally the request uploaded data and statistics from the data and statistics
endpoints.

In addition to the REST API we are also providing KML4 data as well as Web Map Services5

(WMS) back to the community. This includes public aggregates as well as private, user-centric
aggregates. This includes, but is not limited to, clustered and gridded data from WideNoise Plus
and AirProbe in KML format as well as heatmaps of the collectively recorded air quality data from
AirProbe. See Figure 3.5 for corresponding URLs.

/files/public/airprobe/heatmap/bc/tiles
/event/widenoise/api/data/air/cluster/kml

Figure 3.5: URL to access TMS (a variant of WMS) formatted heatmap tiles of collectively recorded
air quality data from AirProbe and a URL to query KML formatted clusters of WideNoise Plus data.

Besides the mentioned filtered data access possibilities and the aggregated we offer a nightly
dump of the data to the Consortium members6.

3http://tools.ietf.org/html/rfc6749
4https://developers.google.com/kml/documentation/
5http://www.opengeospatial.org/standards/wms
6https://www.kde.cs.uni-kassel.de/datasets/ubicon

2014 c© Copyright lies with the respective authors and their institutions

http://tools.ietf.org/html/rfc6749
https://developers.google.com/kml/documentation/
http://www.opengeospatial.org/standards/wms
https://www.kde.cs.uni-kassel.de/datasets/ubicon


Page 18 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 4

Web Interface

There are two major applications which have been implemented on our platform: WideNoise Plus
and AirProbe [Becker et al., 2013b]. Both have been developed as part of the EveryAware research
project.

WideNoise Plus is an application for monitoring noise pollution and AirProbe monitors air quality.
The data collected by the smartphones are transmits to our REST API where it is augmented and
aggregated by the data processor to be visualized on the web interface.

One important feature of the web interface is its integration with social services like Twitter1 and
Facebook2. It is achieved by using the Spring Social module as mentioned in Chapter 2 and also
by utilizing several plugins provided by Twitter and Facebook themselves. Figure 4.1(a) and Fig-
ure 4.1(b) show an example of this integration. When finding an interesting place on the map, it
is possible to share this place on Twitter and Facebook. Furthermore, we are connecting objec-
tive data with social context by incorporating filtered social content from social networks into our
system. An example can be seen in Figure 4.2 where we add relevant Tweets to the AirProbe air
quality map.

4.1 AirProbe

AirProbe is a system for collaborative air quality monitoring. The sensor box produces readings
from several air quality related sensors such as NO2, CO, O3, VOC, temperature, and humidity.
Users may add tags concerning their measurements adding semantics or subjective information
to the otherwise objective measurements.

The web application provides several views on the data summarizing it in various ways including a
map with different layers as well as several global and personal statistics.

The map visualizes the collected data on a map which allows for an easy access to the data as well
as for obtaining first insights. The OpenStreetMap3 map provides a quantitative view on the data
by aggregating samples using clusters, grid as well as a heatmap view in order to emphasize the
covered area as shown in Figure 4.3 and Figure 4.4. Both views are also available for individual
users summarizing their personal data.

The map view also supports the active tracking of currently measured data. Tracking these cur-
rent measurements is further supported by providing data compliant with Google Earth for 3D
visualizations.

The statistics calculated by the AirProbe application include global as well as personal statistics like
latest overall measurement activity or air quality averages. Furthermore, they list user sessions,

1https://twitter.com
2https://facebook.com
3http://openstreetmap.org/

ÆEvery

Aw
ar

e

https://twitter.com
https://facebook.com
http://openstreetmap.org/


D2.2: Final version and report on the web-based infrastructure Page 19 of 36

(a) A screenshot of the map page of WideNoise Plus. In the upper-left corner the share buttons
for Twitter and Facebook are shown.

(b) A screenshot of a shared map fragment on Twitter.

Figure 4.1: EveryAware functionality for sharing content on Twitter.

2014 c© Copyright lies with the respective authors and their institutions



Page 20 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 4.2: Adding filtered social content (Tweets) to objective data (AirProbe air quality measure-
ments).

give short summaries regarding those sessions enable the user to view and replay those session.
The personal sessions overview can be seen in Figure 4.5(a). One view for exploring personal
sessions can be seen in Figure 4.5(b).

The AirProbe module of the EveryAware platform also had to support the APIC case study. The
case study was held in order to gather large amounts of air quality samples and behavioral shift pat-
terns using the sensorboxes in the four cities Antwerp, Kassel, London and Turin. In order to keep
the motivation and competitiveness as high as possible for the teams playing, we implemented a
ranking mechanism balancing repetitive sampling and coverage: The map was divided into 10 by
10 meter grids. One point was given to the team when sampling within one such grid cell. When
the team received a point in a particular cell, the player did not receive a point from this grid cell for
half an hour. The results for each city as well as for each team have been visualized and updated
in regular intervals on the AirProbe website as can be seen in Figure 4.6. Figure 4.6(a) shows the
ranking of each city visualizing the coverage and providing several statistics. Figure 4.6(b) shows
a detailed view of the point-coverage of the city, in this case Kassel.

4.2 WideNoise Plus

The WideNoise Plus web application aggregates, summarizes, and illustrates noise-related data
collected by the WideNoise Plus smartphone application [Becker et al., 2013b]. This smartphone
application is recording environmental noise levels and allows the user to express certain percep-
tions about the recorded samples via perception sliders (e.g., Love–Hate). To further characterize
the samples it is possible to attach custom tags. In order to share samples with friends or the
general public the smartphone application also supports posting results on social media.

The WideNoise Plus web application provides several data summarization views including the map

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 21 of 36

Figure 4.3: A screenshot of the map page of AirProbe. The left side shows the cluster view, the
right side shows the grid view.

and several statistics pages. The map is shown in Figure Figure 4.8. It displays, for example, a
clustered view on global and user specific measurements (providing corresponding detail informa-
tion on demand [Shneiderman, 1996]) or a tag cloud characterizing the summarized data by its
semantic context.

The user can access several live statistics about the collected data allowing to trace current mea-
surement trends or get an overview of the collected data. Some of these statistics are:

• Number of measurements users collected in the past two weeks.

• Activity of users for each continent during the past three days.

• Latest recordings and recent average values for different time intervals and locations.

• User rankings including users with most samples, the most active users, etc.

• Tag clouds characterizing the semantic context of the measurements.

Figure 4.7(a) and Figures Figure 4.7(b) show the global and personal statistics pages.

A second type of statistics can be accessed by users via their personal page for information on
their own measuring behavior. As an alternative to the map visualization, the page also provides a
KML4 (Keyhole Markup Language) export containing all the user’s measurements.

4http://opengeospatial.org/standards/kml/

2014 c© Copyright lies with the respective authors and their institutions

http://opengeospatial.org/standards/kml/


Page 22 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 4.4: A screenshot of heatmap on the map page of AirProbe.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 23 of 36

(a
)

Th
is

A
irP

ro
be

vi
ew

sh
ow

s
a

us
er

’s
pe

rs
on

al
se

ss
io

ns
.

(b
)

Th
is

A
irP

ro
be

vi
ew

sh
ow

s
a

vi
ew

fo
re

xp
lo

rin
g

in
di

vi
du

al
us

er
se

ss
io

ns
.

Fi
gu

re
4.

5:
Pe

rs
on

al
se

ss
io

n
vi

su
al

iz
at

io
ns

.

2014 c© Copyright lies with the respective authors and their institutions



Page 24 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

(a)
A

P
IC

city
ranking.

(b)
A

P
IC

pointcoverage
forK

assel.

Figure
4.6:

A
P

IC
ranking

visualizations.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 25 of 36

(a
)

Th
e

gl
ob

al
W

id
eN

oi
se

P
lu

s
st

at
is

tic
s

pa
ge

.
(b

)
Th

e
pe

rs
on

al
W

id
eN

oi
se

P
lu

s
st

at
is

tic
s

pa
ge

.

Fi
gu

re
4.

7:
W

id
eN

oi
se

P
lu

s
st

at
is

tic
s

pa
ge

s.

2014 c© Copyright lies with the respective authors and their institutions



Page 26 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 4.8: Screenshot of the WideNoise Plus map page.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 27 of 36

Chapter 5

The Experimental Tribe gaming
platform

The Experimental Tribe gaming platform [Caminiti et al., 2013; Cicali et al., 2011] (XTribe in the
following) was planned to be already operational in the second part of the project. The platform
has been used to implement and host the web-based experiment used in connection with the main
large scale case study of the project, the AirProbe International Challenge (APIC). Therefore, our
efforts in terms of development were focused mainly on testing its response and stability to large
user access.

5.1 Large scale experiment testing

We developed experiments with the aim to reach a large user participation. In particular, we de-
signed an put in action the laPENSOcosi experiment which, beside its intrinsic relevance, also
proved that XTribe could withstand thousands of users and hundreds of simultaneous accesses.
laPENSOcosi was a web experiment in the shape of an entertaining personality test, where we
explicitly investigated users opinions on political entities (parties, coalitions, individual candidates)
of the Italian political scene. The aim of the experiment was to study the political perception of ital-
ian voters before the political elections of February 2013. We found that when ranking candidates
according to the user expressed preferences, the perceived distance of the user from a certain
candidate scales as the logarithm of this rank, similar to a Weber-Fechner law. A detailed descrip-
tion of the result of the experiment is beyond the scope of this report. What matters here, is that
the platform granted its service in such a large scale experiment. We released laPENSOcosi on
the XTribe portal on the middle of January 2013. At the early days of March 2013 (elections were
on 24-25 February 2013) the experiment gathered 81508 opinions expressed by 1727 users. Thus
we had an average of more than 1600 opinions. Moreover, we registred peaks of almost 10000
opinions from more than 200 users in a single day without any trouble for the platform.

5.2 Integration with other platforms

The impressive results in terms of participation obtained by the laPENSOcosi experiment, were
made possible not only thanks to traditional advertising methods (through newspapers, news web-
site, radio, etc.) but also exploiting the XTribe Facebook integration capabilities. Actually, thanks to
Facebook developer functionalities and some apposite Drupal modules (XTribe is Drupal-based),
users are able to:

• register on the platform and login in one click through their Facebook account;

• join to XTribe experiments within Facebook, by playing with the XTribe Facebook app;

2014 c© Copyright lies with the respective authors and their institutions



Page 28 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

• invite their friends to play on the platform;

• share results of their game experiences on Facebook through the Facebook API.

Another important integration implemented was with the Mechanical Turk recruitment. XTribe can
be used in conjunction with the Amazon Mechanical Turk platform (www.mturk.com, a virtual mar-
ketplace for small online jobs such as image annotation, polls, translations, etc; will be referred to
as AMT in the following) in order to exploit its ability to recruit users with a modest monetary invest-
ment. AMT can be used to enhance participation and possibly in the initial phase of an experiment,
to provide the necessary pool of data to begin with. In particular, we used AMT users in the City
Race experiment described in the Deliverable 2.1. For this analysis, we discuss two user groups,
corresponding to two experimental settings with different stress levels and goals, who show differ-
ences in performance. One group was composed mostly by players taking part in a special event
organized in a bookstore in Rome already described in Deliverable 6.2, while the other was set up
by recruiting players in the virtual labour market of AMT. Through these experience we proved that
XTribe can be successfully used as a host for complex AMT tasks and that researcher can safely
recruit users on the Amazon platform when needed. A possible integration strategy, the one used
for CityRace, is to provide a payment code at the end of the game for AMT users, as is portrayed
in Fig. 5.1.

Figure 5.1: Screenshots of the CityRace interface, during the AMT code retrieval.

Beside this, we also invested time in promoting the platform by participating to international confer-
ences in order to reach one of the main aim of the XTribe: the creation of a community of developer.
At present time, there are several developers active on the platform working on their own experi-
ments. Thus we implemented a set of tools to support the community such as a forum integrated
on the platform and a documentation portal (http://doc.xtribe.eu) where guides, tutorials and
XTribe API documentation can be found.

ÆEvery

Aw
ar

e

www.mturk.com
http://doc.xtribe.eu


D2.2: Final version and report on the web-based infrastructure Page 29 of 36

5.3 The AirProbe International Challenge web game

5.3.1 Introduction

The AirProbe web-game has been developed to gather and monitor citizens’ subjective opinions
about air pollution during the final case study of the EveryAware project, named AirProbe Inter-
national Challenge, APIC in the following.

5.3.2 The challenge

APIC was presented as a competition between four cities: Antwerp (Belgium), Kassel (Germany),
London (England) and Turin (Italy). The aim of the competition was to build a map of air pollution
for each city. People from each city willing to join could become either Air Ambassadors, to
measure the levels of air pollution with the sensor box developed by the EveryAware Consortium,
or Air Guardians, to report subjective air pollution level estimations in various spots of their city.
The challenge was divided in three phases, each of them lasting two weeks, and in each phase
the two kinds of volunteers had to perform different tasks.

The Air Ambassadors had the assignment to cover a given area measuring air quality levels with
the provided sensor box. While Air Ambassadors had to play the web game and to recruit players
in phase one, their measuring activity started in phase two and had to be fairly distributed in space
and time, i.e., trying to optimize space-time coverage. Instead, during phase three, Ambassador
were free to measure wherever they liked. The specific tasks for Air Guardians were actually virtual
tasks in the web-game context and will be described in the following.

5.4 Game Concept

In order to gather subjective opinions about the air pollution in the four cities we decided to follow
the GWAP approach and accomplish the task using a web-game. We started designing the game
taking inspiration from the peculiar kind of data we wanted. Our specific aim was not only to get
a map of perceived air pollution but also to study how the perception is affected by objective data.
In fact, the case study specifics foresaw volunteers opinions monitoring before, during and after
exposition to objective pollution data, obtained by AirAmbassadors sensor-boxes. So we needed
to keep players engaged in the game for the longest time possible, in order to monitor the opinion
shift of each player. Beside this, opinions about air pollution had to be geolocated so the game
had to take place on the map of the four city. In particular, for each city we defined an area of
data gathering of approximately 3 square kilometers. The areas for each city are represented in
Fig. 5.2.

The most suitable kind of game seems thus to be a management simulation, like the famous
FarmVille or Harvest Moon. In this kind of game the user have the task to take care of a given
territory. By improving his management performances, the user increase the income in the game
virtual currency. Thus he may access a wider set of interaction, for example he can expand his
territory or buy more stuff, trying to get a further improvement. The periodic rhythm of this vicious,
or virtuous circle, is marked (in FarmVille-like game) by the ripening time of the income: in order
to generate a revenue, each action required a given time, spanning from few seconds to several
hours. This mechanism is an incentive to return to the game, in order to gather the results of the
efforts.

The AirProbe web game is a simplified kind of map management game. We reported in Fig. 5.3
the interface of the game. Players are called to fulfill their role of Air Guardians by annotating the
map with AirPins, geolocated flags with an estimation of the pollution level identified as the level
of Black Carbon in µg/m3 within a scale from 0 to 10. The game area of each city is divided in

2014 c© Copyright lies with the respective authors and their institutions



Page 30 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 5.2: In green the game areas and in blue the measurements areas for the four cities.The
grid represents the tiles division for the web game. From the top left to the bottom right: Antwerp,
Kassel, London and Turin.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 31 of 36

Figure 5.3: Screenshots of the game interface, with indication of the main entity and tools.

Tiles as indicated in Fig. 5.2. At the beginning of the game, users are asked to create a profile
(by choosing an avatar and a name) and to choose a city and a team. Teams were linked to Air
Ambassadors, and were an important part of the competition. Then the volunteer starts from a
given Tile of the map of the chosen city. The user can interact by placing (or editing or removing)
AirPins or by expanding his territory by buying more Tiles. Each day the AirPins placed generate
a revenue calculated on the precision of the annotation (more details in the following). In order to
collect the revenue generated every day by each AirPin, the user has to access daily, otherwise
the revenue will be wasted. The revenue collected will be added to the user balance, and can be
used to buy more AirPins and more Tiles, and so on. In order to improve motivation and fidelity,
there are bonus for day-in-a-row accesses and a great set of achievements. These achievements
consisted in prizes at given milestone in the game story: a certain numbers of AirPins, or of Tiles,
or for the precision in the annotation, and so on. In third phase of the case study we made available
information about objective measurements gathered with Air Ambassador sensor box. We avoided
to give punctual information about measurement, otherwise it was likely that users would simply
copy the punctual values. So we decided to release aggregated information by introducing a new
map partition named AirSquares. Each Tile contains 12 AirSquares, that can be purchased just
like AirPins or Tiles. Once the user bought an AirSquare, he can se the average pollution value in
that area, so the task become to estimate fluctuations.

5.4.1 Revenue and feedback

Our case study, as we said, was divided in three phases. Beside the AirSquare introduction in
phase three, the only change between phases affected the revenue calculation algorithm. We
generically said that revenue was related to precision of the annotation. Let us now define the
meaning of ‘precision’ in our context. In the first phase there were no objective data for comparison,
thus we adopted the strategy of matching the AirPins value with the value of other users AirPins
within a certain range (30 meters). The general algorithm of revenue calculation for a certain AirPin
X of coordinate (Xlat, Xlon) and value XBC was chosen in order to fulfill these conditions:

No data Even if we solved the problem of the lack of data by comparing a user annotation with
other users annotations, at the beginning of phase one also other users annotation were

2014 c© Copyright lies with the respective authors and their institutions



Page 32 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

missing. So, in case of absence of other AirPins within the range, the only choice was to
trust the user and give him an average revenue for the AirPin.

Distance In case of other AirPins within the range, their distances fromX location had to be taken
into the account.

Reliability of the match A match with a greater number of others AirPins had to correspond to a
greater revenue. So the maximum possible revenue is determined by the number of AirPins
within the range.

We decided that the most simple and reasonable choice was a confrontation with the average of
all the AirPins (including X itself) within the range, weighted with function of the distance from X
location, and rescaled depending on the number of annotation. So let F be the set of all flags
within 30 meters from X , including X itself and consider the sequence (Fi(BC), Fi(Dist(X))) of
Black Carbon estimations values and distances from X of all flags in F . Let PBC be the weighted
mean of FBC using weight Widefined as

Wi = 1− Fi(Dist(X))2/302 (5.1)

Let W be the sum of all Wi. We computed the maximum revenue based on how many flags are
there, more precisely it is based on W . We use an inverse exponential function to smooth the max
revenue (MR) from 30 (when W = 1) to about 65 (when W = 10) to 75 (when W > 20):

MR = 30 + 45(1− 2−(W−1)/3) (5.2)

We now define the ‘error’ EX of the estimation for the X AirPin as the absolute value of the
difference between XBC and PBC . Finally, we defined a critical threshold C for the error. If
EX > C then the revenue will be 0 anyway otherwise the following formula is used to calculate
the final revenue RX for X :

RX =MR(1− EX/C) (5.3)

Users perception of the revenue was collective: they only know the cumulative value for the whole
ensemble of their AirPins. The only feedback regarding single flags is a red sign for flag that are
not generating any revenue.

As we said, the revenue algorithm has been different in each of the three phases:

Phase one The threshold for the error was very tolerant (5µg/m3) in order to make the game
easy at the beginning.

Phase two The threshold was made smaller (2.5µg/m3), in order to push users to improve their
performances.

Phase three The threshold was unchanged but real measurements from Air Ambassadors sensor
boxes were used instead of other players annotation to calculate the revenues.

Users were not informed about the detail of the algorithm. They were just told to try to be precise.

5.4.2 Design Issues and possible future solutions

No punctual feedback As we said, a direct feedback about the revenue generated by each AirPin
was not given to avoid users to simply adapt the flags value in order to optimize the local
revenue. This has caused a lot of complaining from the users. In fact, this partial blindness
about the consequences of the game interaction is quite frustrating. A possible solution is to
make available direct feedback only by paying a certain (high) amount of virtual credits and
only for a limited number of AirPins.

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 33 of 36

Scale meaning At the beginning of the game, many users did not knew nothing about the scale
meaning. In order to make them use the range in a realistic way an histogram of real mea-
surement above the city may be represented near the scale. In this way users may under-
stand better what values have to be used and what values are unreasonable. Another way to
act is to avoid completely the issue by presenting them just a perceptive scale, unbounded
from real values.

Prices, revenues and scaling In the actual formulation the game was slightly too easy and
pushed players to expand their territories and place more flag, instead of trying to fine tune
what they have. In this way their maps grew larger then expected and the game interfaces
were overloaded, in some cases with hundreds of flags. A possible solution would consist
in raise the prices. Even if this will probably let players focus a little more on the quality of
their flags instead of the quantity, this is not resolutive because the overloading process will
simply slow down but will still be there, at a certain point. Another possible solution is to
make AirPins decay after a given amount of time. In this way users are forced to come back
and to annotate places several time. The decay may also not be fixed but caused by other
factor, such as virtual random disaster (“Sorry, a flood destroyed some of your AirPins”) or
attack from other users (see the following point).

Poor social interaction Even if the game is integrated with social networks and allow users to
share contents, this point can be greatly improved. It could be interesting, for example, to
allow volunteers to check the annotation of their friends, or to attack the friends, destroying
some of the AirPins. This would also be a possibility of enrichment of the interface: a market
of attack/defence gadget would be introduced, making the game more appealing.

5.4.3 Ranks and prizes

Every day were compiled ranks about the players performances. In order to boost motivation, we
introduced a set of prizes to be given at the end of each phase and in each city. We considered
two main metrics for the ranks: the total revenue of the last day of play and the number of day
played in each phase (we will call it fidelity). The basic prizes scheme was the following: top five
last day total revenue were awarded with t-shirts, while the best last revenue got a backpack. We
also assigned another backpack to the most faithful user and some t-shirts to the other top fidelity
players. In case of ex aequo (which for this quantity are not so unlikely) average precision in the
annotation was used to decide the winners (precision is defined as the average revenue per flag,
calculated on a minimum of 20 flags). In Turin the basic prizes scheme was strictly complied. In
Kassel and London the scheme was enriched with some Amazon voucher to best teams for few
hundreds of euros / pounds. In particular each team received e50 / £100 in Amazon vouchers and
the team with the best time/space coverage and the largest number of active Air Guardian players
won e250 / £400 in Amazon vouchers. In Antwerp the prize scheme was much more flexible and
has been adapted to the low number of players.

5.5 Implementation details

The game’s user interface has been developed using standard web technologies. It consists of
about 700 lines of HTML 5 and CSS 3 together with almost 3000 lines of JavaScript code organized
in several objects. The core object is in charge for handling all client-server communication trough
XTribe, coordinating all other objects, and maintain the game status.

The game makes extensive use of Google Maps API 3.0 and there is a MapManager object in
charge for all the map related interactions. The most noticeably Google Maps features used by the

2014 c© Copyright lies with the respective authors and their institutions



Page 34 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

game are: configuration and customization, event listening, custom markers, coordinate conver-
sion, drawing API, map movement and zooming functions, pan constraining, custom UI controls.
This latter feature required a dedicated JavaScript object: UIManager. It handles all the custom UI
controls that are shown on top of the Google Map such as the top control bar, custom messages
and popup boxes, etc. These three main objects are complemented by a set of others utility ob-
jects for language localization, achievements handling, in-game tutorial, and integration with social
networks (Facebook and Twitter).

The server side game manager is written in nodeJS in order to guarantee a high level of concur-
rency and properly serve users that are interacting with the game at the same time. Game data
are stored into a MySQL database. There are tables for users, their open tiles, their AirPins, and
the AirSquares they bought. Moreover there is an history table where we store all actions done by
each user during the game play with timestamps to allow better analysis of user behavior.

The XTribe platform automatically take care of all message exchange with the client UI and the
manager during the initial and final phases of the game. But during the main game phase a variety
of custom message are exchanged. A summary of the messages sent from the client UI to the
manager is as follows (message parameters appear in parenthesis):

• playNow. The user is actually going to play now.

• saveSettings [city, language, name, avatar, team]. The user changed her settings.

• setFlag [airPinId, latitude, longitude, value]. The user added or modified an AirPin.

• delFlag [airPinId]. The user removed and AirPin.

• buyTile [tileId, price]. The user bought a map tile.

• buyAirSquare [airSquareId, price]. The user bought an AirSquare

• saveAchievements [achievementId]. The user obtained an achievement.

• claimAchievement [achievementId, revenue]. The user claimed the prize associated to an
achievement.

A summary of the messages sent from the manager to the client UI is as follows:

• settings [city, language, name, avatar, team, tiles, airPins, airSquares, daily revenue]. For
returning users, at the beginning of the game the manager send all saved information.

• tilesAndFlags [array of tiles, array of AirPins]. For new users, in response to the first
saveSettings message, the manager generates initial game data (such as a random ini-
tial tile) and send them back to the user to start playing.

• airSquareInfo [pollution level]. In response to a buyAirSquare message from the client, the
manager sends back the associated pollution level.

We remark that most of the exchanged messages also carry information about spent money and
balance in order to allow server side checks and discard messages from players that are trying to
cheat.

5.5.1 Revenue computation

Once a day the revenues for each user AirPin were computed according with Equation 5.3. That
formula requires to confront each AirPin of a users against those from all other users within a give
radius r = 30m. A naive approach would easily result in an algorithm whose execution time grows

ÆEvery

Aw
ar

e



D2.2: Final version and report on the web-based infrastructure Page 35 of 36

quadratically with the overall number of AirPins and that queries the database for the same values
over and over. This would ultimately result in overloading the server itself.

In order to avoid this risk and efficiently compute revenues we consider each city as split into
columns of width r. In a generic step i we compute the revenue of each AirPin in column i
while having in memory also all AirPins in columns i − 1 and i + 1. At the end of step i we
discard column i− 1, query the database to fetch column i+2, and proceed to the next step. This
approach guarantee that no AirPin data is fetch twice from the database without requiring to retrain
in memory all AirPins of a city. To further improve the computation all AirPins in a column are sorted
by increasing latitude. Revenues are computed in a top-down order and for each column a single
index allow us to avoid reconsidering AirPins that are more than r meters Northern than the current
spot of interest. This ensures that in each revenue computation only AirPins in a square or side 2r
are considered (even though those at distance greater than r from the spot of interest provide no
contribution to the revenue). In order to optimize database writing we maintain in memory an array
of revenues for each user and write them all at the end of the computation of each city. Even those
values that have to be written for each single AirPin are buffered in order to perform optimized
queries that write several values at once.

In conclusion, the resulting computation is practically linear in the number of AirPins and does not
perform redundant read/write database queries.

2014 c© Copyright lies with the respective authors and their institutions



Page 36 of 36 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Bibliography

Martin Atzmueller and Juergen Mueller. Subgroup Analytics and Interactive Assessment on Ubiq-
uitous Data. In Proceedings of the International Workshop on Mining Ubiquitous and Social
Environments (MUSE2013), Prague, Czech Republic, 2013.

Martin Atzmueller, Martin Becker, Stephan Doerfel, Mark Kibanov, Andreas Hotho, Björn-Elmar
Macek, Folke Mitzlaff, Juergen Mueller, Christoph Scholz, and Gerd Stumme. Ubicon: Observ-
ing social and physical activities. In Proc. 4th IEEE Intl. Conf. on Cyber, Physical and Social
Computing (CPSCom 2012), 2012.

Martin Atzmueller, Martin Becker, Mark Kibanov, Christoph Scholz, Stephan Doerfel, Andreas
Hotho, Bjoern-Elmar Macek, Folke Mitzlaff, Juergen Mueller, and Gerd Stumme. Ubicon and
its applications for ubiquitous social computing. New Review of Hypermedia and Multimedia, 20
(1):53–77, 2014. doi: 10.1080/13614568.2013.873488. URL http://www.tandfonline.com/

doi/abs/10.1080/13614568.2013.873488.

Martin Becker, Saverio Caminiti, Donato Fiorella, Louise Francis, Pietro Gravino, Mordechai (Muki)
Haklay, Andreas Hotho, Vittorio Loreto, Juergen Mueller, Ferdinando Ricchiuti, Vito D. P. Serve-
dio, Alina Sîrbu, and Francesca Tria. Awareness and learning in participatory noise sensing.
PLoS ONE, 8(12):e81638, 12 2013a. doi: 10.1371/journal.pone.0081638.

Martin Becker, Juergen Mueller, Andreas Hotho, and Gerd Stumme. A generic platform for ubiqui-
tous and subjective data. In 1st International Workshop on Pervasive Urban Crowdsensing Ar-
chitecture and Applications, PUCAA 2013, Zurich, Switzerland – September 9, 2013. Proceed-
ings, pages 1175–1182, New York, NY, USA, 2013b. ACM. doi: 10.1145/2494091.2499776.

Saverio Caminiti, Claudio Cicali, Pietro Gravino, Vittorio Loreto, Vito DP Servedio, Alina Sirbu,
and Francesca Tria. Xtribe: a web-based social computation platform. In Cloud and Green
Computing (CGC), 2013 Third International Conference on, pages 397–403. IEEE, 2013.

Claudio Cicali, Francesca Tria, Vito DP Servedio, Pietro Gravino, Vittorio Loreto, Massimo War-
glien, and Gabriele Paolacci. Experimental tribe: a general platform for web-gaming and social
computation. In Proceedings of the NIPS Workshop on Computational Social Science and the
Wisdom of Crowds, 2011.

Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations.
In Symposium on Visual Languages, Boulder, CO, USA – 3-6 September, 1996. Proceedings,
pages 336–343, New York, NY, USA, 1996. IEEE. doi: 10.1109/VL.1996.545307.

ÆEvery

Aw
ar

e

http://www.tandfonline.com/doi/abs/10.1080/13614568.2013.873488
http://www.tandfonline.com/doi/abs/10.1080/13614568.2013.873488

	Overview
	Architecture
	Conceptual Layer
	Implementation Layer
	Data Pipeline
	Data Processor


	REST API
	Web Interface
	AirProbe
	WideNoise Plus

	The Experimental Tribe gaming platform
	Large scale experiment testing
	Integration with other platforms
	The AirProbe International Challenge web game
	Introduction
	The challenge

	Game Concept
	Revenue and feedback
	Design Issues and possible future solutions
	Ranks and prizes

	Implementation details
	Revenue computation



