
ÆEvery

Aw
ar

e

Project no. 265432

EveryAware

Enhance Environmental Awareness
through Social Information Technologies

http://www.everyaware.eu

Seventh Framework Programme (FP7)

Future and Emerging Technologies of the Information Communication Technologies
(ICT FET Open)

D2.1: First prototype of and interim report on
web-based infrastructure

Period covered: from 01/03/2011 to 31/08/2012 Date of preparation: 31/08/2012
Start date of project: March 1st, 2011 Duration: 36 months
Due date of deliverable: Aug 31st, 2012 Actual submission date: Aug 31st, 2012
Distribution: Public Status: Final

Project coordinator: Vittorio Loreto
Project coordinator organisation name: Fondazione ISI, Turin, Italy (ISI)
Lead contractor for this deliverable: Gottfried Wilhelm Leibniz Universität Hannover
(LUH)

2012 c© Copyright lies with the respective authors and their institutions

Page 2 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Executive Summary

A characteristic of social information technologies as they are used within the EveryAware project
is that they often involve very large amounts of data. In fact, the collection, storage and analysis of
different kinds of data within these systems is a crucial point and also an asset, e.g., for companies
like Facebook1. As a consequence, in order to pave the way towards behavioral shifts within large
citizen populations, methods and techniques of acquiring and handling data play a central role. The
design of web-based infrastructures for this purpose has a great influence both on data quantity
and quality, and hence also on the additional value which can be generated by analyzing the
resulting datasets.

The data in the context of the EveryAware project can be divided into two classes, namely (i)
objective data, which stems mainly from sensors and captures things like sound intensity or gas
concentration, and (ii) subjective data which comprises reactions of humans faced with particular
environmental conditions. This deliverable is structured along these two dimensions.

Ad (i): UBICON is a framework which is used to build a high-performance data storage infrastruc-
ture. The resulting system can be seen as the primary data backend for most of the applications
developed within the EveryAware project. It comprises among others different endpoints e. g., for
noise and air measurements, well-defined interfaces for exchanging data with web applications
and data processors for extracting particular information from the raw inputs.

Ad (ii): Gaming is a well-established way to engage humans in experiments. Although the idea
of crowdsourcing is already implemented in systems like Amazons Mechanical Turk, the design of
social games requires more complex interfaces which are hardly realizable in current implemen-
tations. For this purpose, we introduce Experimental Tribe or XTribe, a platform for web-based
experiments and social computation. Its goal is to allow researchers to realize their own experi-
ments with minimal efforts, leading towards the Web as a “laboratory” to perform studies.

In summary, the data storage system and the gaming platform are the two main components of the
EveryAware web-based infrastructure, which complement each other by addressing specific goals
in the context of collecting, storing and analyzing relevant environmental data.

Outline of the document

In Chapter 2, we describe the UBICON framework which is used to build a high-performance data
storage infrastructure. The following Chapter 3 introduces Experimental Tribe or XTribe, a platform
for web-based experiments and social computation.

Dissemination of the Results

The EveryAware frontend based on the Ubicon framework is online at http://http://cs.everyaware.
eu, and XTribe can be reached at http://www.xtribe.eu/. The social game ”Joe’s City race" has
been presented at the European Conference on Complex Systems (ECCS12), September 2012,

1http://www.facebook.com

ÆEvery

Aw
ar

e

http://http://cs.everyaware.eu
http://http://cs.everyaware.eu
http://www.xtribe.eu/
http://www.facebook.com

D2.1: First prototype of and interim report on web-based infrastructure Page 3 of 60

within the workshop “Complexity paradigms for Smart, Green and Integrated Transport". The same
game has participated in the Idea Lab workshop, in June 2012, where it has been presented and
displayed in the Science Gallery in Dublin, Ireland, within the “Hack the City” exhibition.

2012 c© Copyright lies with the respective authors and their institutions

Page 4 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Contents

1 Overview 8

2 Data Storage Infrastructure 10
2.1 Introduction . 10

2.2 Database . 11

2.2.1 Table dataairqualityapp . 11

2.2.2 Table datawidenoise . 12

2.2.3 Table events . 14

2.2.4 Table measurements . 15

2.2.5 Table pendinguser . 15

2.2.6 Table tags . 16

2.2.7 Table twitter_status . 17

2.2.8 Table user . 17

2.3 REST Server . 19

2.3.1 Responses and Errors . 19

2.3.2 Data Collection . 19

2.3.3 Noise Endpoints . 20

2.3.4 Air Endpoints . 21

2.3.5 Webapp Endpoints . 22

2.4 Data Processor . 28

2.4.1 Request Parser . 29

2.4.2 Location Appender . 30

2.4.3 OpenStreetMaps Appender . 31

2.4.4 Tag Extractor . 31

2.5 Ubicon . 31

2.5.1 Overview . 31

2.5.2 WideNoise . 32

3 Gaming Platform 45
3.1 Introduction . 45

3.2 Experimental Tribe . 47

3.2.1 Blindate . 47

3.2.2 Joe’s City Race . 50

3.3 Technical details . 55

3.3.1 Basic entities . 56

3.3.2 Technologies for development and communication 56

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 5 of 60

3.3.3 Game setup . 57

3.4 Further developments of the platform . 58

2012 c© Copyright lies with the respective authors and their institutions

Page 6 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

List of Figures

2.1 dataairqualityapp table schema . 11

2.2 datawidenoise table schema . 13

2.3 events table schema . 14

2.4 measurements table schema . 15

2.5 pendinguser table schema . 16

2.6 tags table schema . 16

2.7 twitter_status table schema . 17

2.8 user table schema . 18

2.9 Component Overview of the Data Processor . 29

2.10 Static pages of WideNoise event of the “noise” category. 33

2.11 Social sharing functionality on the “WideNoise” event’s front page. 34

2.12 Front page statistics for the WideNoise event of the “noise” category. 35

2.13 User statistics for the WideNoise event of the “noise” category. 36

2.14 Coverage page of the “WideNoise” event. 38

2.15 Map page of the “WideNoise” event. 39

2.16 Data representations on the map page of the “WideNoise” event. 40

2.17 Elements on the map page of the “WideNoise” event. 41

2.18 Tagcloud functionality on the map page of the “WideNoise” event.. 42

2.19 Profile page. 44

3.1 A screenshot of the XTribe homepage. 46

3.2 A set of screenshots of the Blindate interface. 48

3.3 Rome map of focal points drew with the position guessed in Blindate. Redder points
indicate an higher density of guess, corresponding to a focal point. 49

3.4 In the left graph, the ratio of winning matches at each turn (55% of match at the first
turn; of the remaining 45% the 35% matched at the second turn and so on). In the
right graph, the average distance between the guess of the two players at each turn
of the game. 49

3.5 Joe’s City Race: select location. 51

3.6 Joe’s City Race: single-player, phase I, no traffic information. 51

3.7 Joe’s City Race: single-player, phase II, traffic displayed as colours on the streets. . 52

3.8 Joe’s City Race: score for single-player game. 52

3.9 Joe’s City Race: multi-player. 53

3.10 Joe’s City Race: score for multi-player game. 54

3.11 Effect of the amount of traffic information on player performance. 54

3.12 Imitation during multi-player games. 55

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 7 of 60

3.13 Score for multi-player games. 56

3.14 Communication between the ET Server and the GM. 57

2012 c© Copyright lies with the respective authors and their institutions

Page 8 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 1

Overview

A characteristic of social information technologies as they are used within the EveryAware project
is that they often involve very large amounts of data. In fact, the collection, storage and analysis of
different kinds of data within these systems is a crucial point and also an asset, e.g., for companies
like Facebook1. As a consequence, in order to pave the way towards behavioral shifts within large
citizen populations, methods and techniques of acquiring and handling data play a central role. The
design of web-based infrastructures for this purpose has a great influence both on data quantity
and quality, and hence also on the additional value which can be generated by analyzing the
resulting datasets. Typical goals during the design process are:

• Performance: Because the involvement of large numbers of humans requires responsive
interfaces and efficient server backends, all infrastructures must be carefully tuned for high-
performance requirements of processing large amounts of data in a parallel fashion.

• Management: The setup and technical realization of experiments and studies among citi-
zens often implies strong efforts on the side of scientists and experimenters. As a conse-
quence, it is desirable to provide reusable and configurable experimentation platforms which
can easily be managed.

• Correctness: A large-scale collection of data can hardly be expected to provide only correct
and consistent results. However, the reduction of noise from the very beginning (i.e., the
concrete measurements) is desirable in order to provide a better basis for later analysis.

Broadly speaking, the relevant data in the context of the EveryAware project can be divided into
two classes, namely (i) objective data, which stems mainly from sensors and captures things like
sound intensity or gas concentration, and (ii) subjective data which comprises reactions of humans
faced with particular environmental conditions. This deliverable is roughly structured along these
two dimensions.

In Chapter 2, we start by describing how the UBICON framework is used to build a high-
performance data storage infrastructure. The resulting system can be seen as the primary data
backend for most of the applications developed within the EveryAware project. It comprises among
others different endpoints e. g., for noise and air measurements, well-defined interfaces for ex-
changing data with web applications and (iii) data processors for extracting particular information
from the raw inputs.

The UBICON framework itself is used as a modular and flexible framework for embedding cus-
tomized components, based on standard software and open standards. These include e. g., au-
thentication and authorization modules as well as the aforementioned data processors. Technically,

1http://www.facebook.com

ÆEvery

Aw
ar

e

http://www.facebook.com

D2.1: First prototype of and interim report on web-based infrastructure Page 9 of 60

all data is stored within a MySQL database. To be clear, the storage infrastructure does not con-
tain exclusively objective data (from sensors), but also subjective data gathered e. g., from users
tagging measurements.

The following Chapter 3 shifts perspective and focusses solely on subjective data, more precisely
on gaming as a well-established way to engage humans in experiments. Although the idea of
crowdsourcing is already implemented in systems like Amazons Mechanical Turk, the design of
social games requires more complex interfaces which are hardly realizable in current implemen-
tations. For this purpose, we introduce Experimental Tribe or XTribe, a platform for web-based
experiments and social computation. Its goal is to allow researchers to realize their own experi-
ments with minimal efforts, leading towards the Web as a “laboratory” to perform studies.

The core idea behind XTribe is to offer a set of readily useable standard components, which are
used within a great bandwidth of different experiments. Those include e. g., user handling, interface
hosting or security issues. Similar to the data storage architecture, it has a modular structure,
which allows the researcher to focus on his core questions by hiding away most of the complexity
associated with running a web-based experiment. On the other hand, it is furthermore intended to
serve as a “basin of attraction” for people willing to participate in experiments.

In summary, the data storage system and the gaming platform are the two main components of the
EveryAware web-based infrastructure, which complement each other by addressing specific goals
in the context of collecting, storing and analyzing relevant environmental data.

2012 c© Copyright lies with the respective authors and their institutions

Page 10 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Chapter 2

Data Storage Infrastructure

2.1 Introduction

The web-based infrastructure of the EveryAware platform is implemented using the UBICON soft-
ware framework1 for implementing social and ubiquitous applications. UBICON has been devel-
oped jointly in the EveryAware project and in the VENUS project2 where it is used for additional
social application: in the CONFERATOR3 system - for guiding and supporting participants during a
conference, and for the MYGROUP4 system for computer-assisted ubiquitous social networking in
working groups.

UBICON provides a modular and flexible framework for embedding customized components; it is
based on standard software components, and applies open standards for the extension and access
to the system.

From a technical perspective, the platform consists of an authentication and authorization com-
ponent, a user management component, a (customizable) set of data processors that process
the incoming data, a social extension component, and a storage architecture based on a MySQL
database.5 The set of data processors include, e. g., the localization component for determining
the location of tags. For management and data access, UBICON features a flexible REST-based
architecture. The components are tied together using the Spring framework6 and can be deployed
using a standard servlet container, e. g., Apache Tomcat.7

UBICON enables the organization of applications in several events. For example, for the WideNoise
application, the data could be organized into different event schemes, as to support different ex-
periments, if necessary. In the Conferator and MyGroup systems, for example, this functionality is
used for providing different events corresponding to conferences (e.g., LWA 20108/20119/201210

or Hypertext 201111), and for events focusing on different working group environments.

In the following sections, we first describe the technical implementation concerning the database
backend, before we describe the web-based front-end in more detail.

1http://www.ubicon.eu/
2http://www.uni-kassel.de/eecs/iteg/venus/
3http://conferator.org/
4http://ubicon.eu/about/mygroup
5http://www.mysql.com/
6http://www.springsource.org/
7http://tomcat.apache.org/
8http://lwa2011.dke-research.de/
9http://lwa2011.dke-research.de/

10http://lwa2012.cs.tu-dortmund.de/
11http://www.ht2011.org/

ÆEvery

Aw
ar

e

http://www.ubicon.eu/
http://www.uni-kassel.de/eecs/iteg/venus/
http://conferator.org/
http://ubicon.eu/about/mygroup
http://www.mysql.com/
http://www.springsource.org/
http://tomcat.apache.org/
http://lwa2011.dke-research.de/
http://lwa2011.dke-research.de/
http://lwa2012.cs.tu-dortmund.de/
http://www.ht2011.org/

D2.1: First prototype of and interim report on web-based infrastructure Page 11 of 60

2.2 Database

We use a MySQL 5.1.62 database that runs inside a VirtualBox. This section describes the table
structure of our EveryAware database. Our database is not normalized and we do not use foreign
keys in order to keep the performance of our server a high as possible.

2.2.1 Table dataairqualityapp

The airqualityapp Table contains all parsed reports received from the Air Quality App Android
application. Most of the information is extracted directly from the report requests, some are added
by our data processor (i.e., city, state, country, map_data).

A description about the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.1.

Figure 2.1: dataairqualityapp table schema

• id: A unique identifier to address a certain data set.

• measurement_id: The identifier that addresses the raw data in the measurements table.

• client: The name of the user agent which we extracted from the User-Agent HTTP header
field.

• event: The name of the event in which’s context the measurement was collected (e.g.,
“AirQualityApp”).

• ip: The source IP address from which we received the measurement.

2012 c© Copyright lies with the respective authors and their institutions

Page 12 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

• rawdata: The content of the received message as it was received (e.g., the whole JavaScript
Object Notation (JSON)12 object as String representation).

• request_ts: The time stamp when we received the corresponding request.

• uid: A string that identifies a device. This string is a 31 to 32 signs HEX MD5 hash string
from iOS devices and a 16 digits long number from Android devices.

• session_id: Identifies a coherent stream of measurement data.

• device: Device identifier, behaves like a user agent for browsers.

• lat: The geographic latitude coordinate of the noise sample.

• lon: The geographic longitude coordinate of the noise sample.

• sample_ts: The UNIX timestamp of the sample.

• co_sensor[i]: Recorded value from the four CO sensors.

• no2_sensor[i]: Recorded value from the two NO2 sensors.

• voc_sensor1: Recorded value from the VOC sensor.

• o3_sensor1: Recorded value from the O3 sensor.

• temperature: Recorded value from the temperature sensor.

• humidity: Recorded value from the humidity sensor.

• user_data_[i]: Subjective data expressed by the user.

• city: The name of the city where the measurement was taken.

• state: The name of the state where the measurement was taken.

• country: The name of the country where the measurement was taken.

• map_data: A pre-processed JSON object containing all information required from WideNoise
to display the measurements on its map if user_data_1 information are present.

2.2.2 Table datawidenoise

The datawidenoise Table contains all parsed reports received from the WideNoise iOS and Android
applications. Most of the information are extracted directly from the report requests, some are
added by our data processor (i.e., city, state, country, map_data).

A description of the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.2.

• id: A unique identifier to address a certain data set.

• event: The name of the event in which’s context the measurement was collected (e.g., “Wide-
Noise”).

• client: The name of the user agent which we extracted from the User-Agent HTTP header
field.

12http://json.org/

ÆEvery

Aw
ar

e

http://json.org/

D2.1: First prototype of and interim report on web-based infrastructure Page 13 of 60

Figure 2.2: datawidenoise table schema

• ip: The source IP address from which we received the measurement.

• rawdata: The content of the received message as it was received (e.g., the whole JSON
object as String representation).

• request_ts: The time stamp when we received the corresponding request.

• uid: A string that identifies a device. This string is a 31 to 32 signs HEX MD5 hash string
from iOS devices and a 16 digits long number from Android devices.

• device: Device identifier, behaves like a user agent for browsers.

• lat: The geographic latitude coordinate of the noise sample.

• lon: The geographic longitude coordinate of the noise sample.

• sample_ts: The UNIX timestamp of the sample.

• duration: The duration of the sample, in seconds. This could be 5, 10, or 15 seconds,
depending on how often the user extended the measurements.

• average_db: The average noise value, expressed in dB, visualized to the user on their dis-
play.

• average_raw: The average noise value, expressed as the internal microphone API raw data,
from which average_db is derived.

• samples: The list of all the samples taken over the sampling period of time (one every 0.5
seconds). It is expressed as raw data directly from the internal microphone API and stored
as a serialized JSON array.

• tags: Contains all tags expressed by the user as a serialized JSON array.

2012 c© Copyright lies with the respective authors and their institutions

Page 14 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

• perception-feeling: The user’s perception about the his emotion for the noise, from love (0.0)
to hate (1.0).

• perception-disturbance: The user’s perception about the disturbance of the noise, from calm
(0.0) to hectic (1.0).

• perception-isolation: The user’s perception about the social environment during the sam-
pling, from alone (0.0) to social (1.0).

• perception-artificiality: The user’s perception about the artificiality of the noise, from nature
(0.0) to man-made (1.0).

• location_precision: Names the source of the location information (e.g., “gps”).

• location_accuracy: Defines how accurate in meters the location information is.

• user_estimate: The guessed noise level from the user.

• city: The name of the city where the measurement was taken.

• state: The name of the state where the measurement was taken.

• country: The name of the country where the measurement was taken.

• map_data: A pre-processed JSON object containing all information required from WideNoise
to display the measurements on its map.

2.2.3 Table events

The events table is used to control multiple event instance on our web application. Currently there
is just the WideNoise event hosted on cs.everyaware.eu, but there will be additional ones as soon
as the sensor box is finished. The stored information are used to define number, type, appearance,
and basic functions for those web applications.

A description of the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.3.

Figure 2.3: events table schema

• id: The intern event specifier.

• category: The event category for this event (e.g., “noise” in the case of WideNoise).

• name: A human-readable name for this event (e.g., “EveryAware – WideNoise”).

• description: A short description of this event.

• ordering: Defines in which order these events should appear in the menu.

• active: Enables or disables this event.

• afterlogin: Defines where the user will be redirected to after signing in.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 15 of 60

2.2.4 Table measurements

The measurements table is the raw data storage. All data requests that are received from the REST
server are stored to this table without any parsing processes in between. These information will
be extracted by the data processor and parsed to their corresponding productive data tables (i.e.,
dataairqualityapp, datawidenoise, tag, twitter_status). The data are associated to the events using
the event column. This table also holds information about the parsing state of the corresponding
measurement that contains weather the data set was processed, processed successfully, and
enriched successfully (if required).

A description of the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.4.

Figure 2.4: measurements table schema

• user: The user name of the owner of this measurement. Currently, this column is not used,
since both EveryAware applications are not bound to a user name.

• client: The name of the user agent which we extracted from the User-Agent HTTP header
field.

• event: The name of the event in which’s context the measurement was collected (e.g., “Wide-
Noise”).

• format: Defines the format of the measurement which is stored in the rawdata column (e.g.,
“json”).

• ip: The source IP address from which we received the measurement.

• header: The whole HTTP header of the received request.

• rawdata: The content of the received message as it was received (e.g., the whole serialized
JSON object).

• ts: The time stamp when we received the corresponding request.

• id: A unique identifier to address a certain data set.

• state: A control flag that is used by the data processor the determine what to do with this
report (see Section 2.4).

2.2.5 Table pendinguser

After a user finished the registration process, his data will be written into the pendinguser table
until the registration is confirmed by an activation mail. We stored the data and time when the

2012 c© Copyright lies with the respective authors and their institutions

Page 16 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

registration attempt happened to be aware of the freshness of the corresponding process. The
data will be removed after the account has been confirmed.

A description about the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.5.

Figure 2.5: pendinguser table schema

• email: The email address of the user.

• password: The chosen password as MD5 hash.

• widenoiseid: The device identifier of the WideNoise device if present.

• confirmkey: The generated key that was sent to the user to be compared with his answer.

• registered_at: The time and date when the user tried to register his / her account.

2.2.6 Table tags

The data processor extracts the tag information from the parsed WideNoise reports in the data-
widenoise table. These are stored separately into the tags table where they are enriched with
some additional information from the user table. Therefore the web application can access every
single tag entity to display it on the map view.

A description about the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.6.

Figure 2.6: tags table schema

• measurement_id: The id of the corresponding report.

• lat: The latitude coordinate where this tag was attached.

• lon: The longitude coordinate where this tag was attached.

• name: The tag itself (could contain white spaces).

• uid: The device identifier of the WideNoise source device.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 17 of 60

• username: The name of the user that transmitted this tag if he / she has an account in our
system.

• event: The name if the related event (e.g., “WideNoise”).

2.2.7 Table twitter_status

There are entries in the measurements table that are neither WideNoise data nor Air Quality App
data. Currently, these are Twitter status messages collected from the WideNoise application and
are therefore associated to the WideNoise event. These data are collected if the WideNoise user
connects his application with his Twitter account; hereby, status messages from this user’s timeline
are collected.

A description about the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.7.

Figure 2.7: twitter_status table schema

• uid: The device identifier of the transmitting WideNoise device.

• timestamp: Time and date when this status message was posted on Twitter.

• user: The user name of the corresponding user in our system.

• text: The Twitter screen name.

2.2.8 Table user

The user table contains all personal information about the registered users of EveryAware. There
are three system-relevant pieces of information about the corresponding user (i.e., name, display-
name, and password). A user can use email or display name together with the password to perform
the log-in. The name is just for system-internal references and cannot be changed by the user.

A description about the table structure and the meaning of all of its columns is given in the following
list as well as in Figure 2.8.

• name: The internal user name.

• displayname: A name to be displayed on the web page.

• password: The user’s personal MD5-hashed password.

• title: The title of this user.

• forename: The user’s forename.

• surname: The user’s surname.

• birthday: The birthday of the user.

2012 c© Copyright lies with the respective authors and their institutions

Page 18 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 2.8: user table schema

• gender: The user’s gender (i.e., “female”, “male”, or “other”).

• picture: Contains a information if the user has an own picture or uses the default one.

• spoken_languages: A list of the user’s spoken languages.

• education: The educational degree of this user.

• email: The user’s email address.

• tel: The phone number of this user.

• fax: The fax number of this user.

• street: The street part of this user’s address.

• zip_code: The ZIP code of the user’s city.

• city: The city part of this user’s address.

• country: The country part of this user’s address.

• icq: This user’s ICQ13 number.

• jabber: This user’s Jabber14 address.

• msn: This user’s MSN15 number.
13http://www.icq.com/
14http://www.jabber.org/
15http://msn.com/

ÆEvery

Aw
ar

e

http://www.icq.com/
http://www.jabber.org/
http://msn.com/

D2.1: First prototype of and interim report on web-based infrastructure Page 19 of 60

• skype: This user’s Skype16 name.

• bibsonomy: This user’s BibSonomy17 name.

• facebook: This user’s Facebook18 name.

• flickr: This user’s flickr19 name.

• googleplus: This user’s Google+20 number / name.

• linkedin: This user’s LinkedIn21 name.

• researchgate: This user’s ResearchGate22 name.

• twitter: This user’s Twitter23 screen name.

• xing: This user’s Xing24 name.

2.3 REST Server

We provide a RESTful interface to the EveryAware mobile applications as well as third party appli-
cations. The results are sent back to the caller as JSON objects. The API entrypoints are prefixed
as cs.everyaware.eu/api/. Details are given in the sections below.

2.3.1 Responses and Errors

Our APIs returns status with a HTTP-like annotation. As a general guideline, here are the typical
codes an API call may return. Further information on standard HTTP status codes can be found
from the W3C:

• 200 OK: The request was successfully handled.

• 400 Bad Request: The server could not read the JSON object you provided.

• 500 Internal Server Error: The server encountered an unexpected condition which prevented
it from fulfilling the request.

2.3.2 Data Collection

API endpoint: [Event]/measurements (POST)

The server accepts a POST request with a JSON object in its content for all noise and air data.

Hereby, measurements and tags are transmitted in two steps. First, the user client sends the
measurements data while the user enters his tags. The tags are transmitted in a second request
after the user confirms his input.

Both requests are handled in the same way. The REST server stores some general information, as
they are, the HTTP header, source IP address, the user agent name, event name, content format,

16http://www.skype.com/
17http://www.bibsonomy.org/
18http://www.facebook.com/
19http://www.flickr.com/
20https://plus.google.com/
21http://www.linkedin.com/
22http://www.researchgate.net/
23http://twitter.com/
24http://www.xing.com/

2012 c© Copyright lies with the respective authors and their institutions

cs.everyaware.eu/api/
http://www.skype.com/
http://www.bibsonomy.org/
http://www.facebook.com/
http://www.flickr.com/
https://plus.google.com/
http://www.linkedin.com/
http://www.researchgate.net/
http://twitter.com/
http://www.xing.com/

Page 20 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

the current time and date, as well as the JSON content of the request as a text. HTTP header,
source IP address, and user agent name are retrieved from the HTTP request, format and event
are retrieved from the request URI, and the JSON object is taken from the requests content. Those
information are stored into the measurements table with state set to NULL and a unique ID.
The server will send back to the client a JSON response with a status code and the ID of the
recorded noise / air sample. As an example:

{
"status": "200",
"id": "123456"

}

An id is not attached if the request was not successful.

2.3.3 Noise Endpoints

Requesting Map Data

API endpoint: [Event]/noise/ (GET)

The server accepts a GET request with all the noise data. The parameter syntax is
lat=%f&lon=%f&lat_delta=%f&lon_delta=%f

• lat and lon are the latitude and the longitude of the center of the map, respectively.

• lat_delta and lon_delta determine the visible map area (i.e. the zoom level). It’s up to the
server to decide if a region is too wide (or contains too many objects to be represented), in
this case it would return a subset of all the objects or none of them.

The server responds with a JSON containing a status code and a data field containing an array of
noise objects. For example:

{
"average_db": 65.127933222222,
"data": {

"46047688470687": {
"average_db": "56.846394",
"geo_coord": [-122.406417, 37.785834],
"timestamp": "1323033341",
"duration": "10"

},
"86543046464888": {
"average_db": "46.332741",
"geo_coord": [-122.406417, 37.785834],
"timestamp": "1321006236",
"duration": "5"

}
}

}

Where:

• The id of each data set is used a JSON field name for the map object.

• geo_coord: The latitude and longitude in decimal degrees of the report.

• average_db: The average level of noise.

• timestamp: The UNIX timestamp (in seconds) of the report.

• duration: The duration of the sampling (in seconds).

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 21 of 60

Retrieving Last Noise Measurement (APIv2)

API endpoint: [Event]/noise/last?originator=%s (GET)

This endpoint returns exactly the same data as the Map endpoint, but just one item.

Retrieving Last Noise Measurement (APIv1)

API endpoint: [Event]/noise/last/legacy?originator=%s (GET)

This endpoint has the same functionality as in APIv2, but returns an XML object. For example:

<widenoisemap apiversion="2.0">
<entry for="all">

<lat>51.518144</lat>
<lon>-0.127716</lon>
<value>75.515205</value>

</entry>
</widenoisemap>

This endpoint is required for some components of WideTag and hence just for compatibility pur-
pose.

Get a Specific Noise Report

API endpoint: [Event]/noise/[ID] (GET)

This endpoint returns exactly the same data as the Map endpoint, but just one item, identified by a
given ID. It is used to show a specific noise detection in a Twitter or Facebook message.

2.3.4 Air Endpoints

Requesting Map Data

API endpoint: [Event]/air/?lat=%f&lon=%f&lat_delta=%f&lon_delta=%f
&originator=%s (GET)

This endpoint works similar to the noise map endpoint, but returns just those reports that have
user_data_1 information in a slightly different structure. For example:

{
"data": [

{
"id"="46047688470687",
"geo_coord": [-122.406417, 37.785834],
"user_data": "Text A",
"avg_pollution":3.45,
"timestamp":"1323033341"

},
{
"id"="86543046464888",
"geo_coord": [-122.406417, 37.785834],
"user_data": "Text B",
"avg_pollution":2.34,
"timestamp":"1321006236"

}
]

}

An empty portion of the map returns:

{
"data": []

}

Additionally, it is possible to specify an originator to request just those reports from a particular
device.

2012 c© Copyright lies with the respective authors and their institutions

Page 22 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Retrieving Last Air Measurement

API endpoint: [Event]/air/last?originator=%s (GET)

This endpoint returns exactly the same data as the Map endpoint, but just one item.

2.3.5 Webapp Endpoints

The following sections cover REST endpoints providing data for the WideNoise web application.
Their URLs all share a common prefix namely event/{id}. Thus, this prefix is omitted.

Set WideNoise id

API endpoint (private): api/personal/set/widenoiseid/{wideNoiseId} (POST)

This endpoint allows to set the users own WideNoise id. The path variable “wideNoiseId” specifies
the id to set the users own WideNoise id to.

Response:
Status code (401) if the user is not logged in
Status code (409) if the WideNoise id is already taken
Status code (200) if the WideNoise id was set sccuessfully

KML (Clusters)

API endpoint: kml (GET)

This endpoint allows to retrieve a KML (keyhole meta language) file aggregating the measurement
data in clusters. There are several parameters to customize the returned data.

Parameters:
Name Format Default Description
bbox double,double,double,double not required Defines a bounding box to limit the returned data. If no

bounding box (min_lon, min_lat, max_lon, max_lat) is
given, all data is returned. If no bounding box is given
no clustering occurs.

dim int,int not required Specifies dimensions (in pixel) of the current map div
element. Used for clustering. If no dimensions are
given no clustering occurs.

threshold int 15 Minimum distance (in pixels) a point must have from a
cluster to not be added to it.

personal boolean false Restricts the data to personal data (only works cor-
rectly when logged in).

from YYYY-MM-DD_HH:mm:ss minimum Restricts to data recorded after the given data.
until YYYY-MM-DD_HH:mm:ss maximum Restricts to data recorded before the given date.

Example:

kml?personal=true&dim=1900,671&bbox=-1.53,48.84,19.34,53.46

ÆEvery

Aw
ar

e

event/{id}

D2.1: First prototype of and interim report on web-based infrastructure Page 23 of 60

Result:

<kml><Document>
<name>widenoise.kml</name>
<open>1</open>
<Placemark>

<ExtendedData>
<Data name="average_db"><value>76.50881954310344</value></Data>
<Data name="p_artifical"><value>0.5043103448275862</value></Data>
<Data name="p_disturbance"><value>0.5</value></Data>
<Data name="p_feeling"><value>0.5</value></Data>
<Data name="p_isolation"><value>0.5</value></Data>
<Data name="youngest"><value>1341925189000</value></Data>
<Data name="oldest"><value>1341831406000</value></Data>
<Data name="count"><value>116</value></Data>
<Data name="bounds"><value>
[4.4025474, 51.185226, 4.4395266, 51.220554]</value></Data>

<Data name="tags"><value>{"Trashtruck":1,"Outside":43,"Bar":2,"
Motorcycle":1,"EvA":97,"Antwerpen":2}</value></Data>

</ExtendedData>
<Point>
<coordinates>4.420051998275861,51.21157837931035</coordinates>

</Point>
</Placemark>

...

</Document></kml>

KML (Grid)

API endpoint: kml/grid (GET)

This endpoint allows to retrieve a KML (keyhole meta language) file aggregating the measurement
data into grid cells. The cell size can be adjusted. The KML features 3D visualization of the grid
cell’s sample count.

Parameters:
Name Format Default Description
dx double 4 Grid width in degrees (longitude).
dy double 4 Grid height in degrees (latitude).

Example:

kml/grid?dx=5&dy=7

2012 c© Copyright lies with the respective authors and their institutions

Page 24 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Result:

<kml><Document>
<name>widenoise.grid.kml</name>
<open>1</open>
<Placemark>

<Style><PolyStyle><color>80ff9933</color></PolyStyle></Style>
<ExtendedData>
<Data name="average_db"><value>38.42845500000001</value></Data>
<Data name="p_artifical"><value>0.5</value></Data>
<Data name="p_disturbance"><value>0.5</value></Data>
<Data name="p_feeling"><value>0.5</value></Data>
<Data name="p_isolation"><value>0.5</value></Data>
<Data name="youngest"><value>1334260520000</value></Data>
<Data name="oldest"><value>1331348659000</value></Data>
<Data name="count"><value>3</value></Data>
<Data name="bounds"><value>

[175.617, -40.39056, 175.64072,-40.35]</value></Data>
<Data name="tags"><value>{}</value></Data>

</ExtendedData>
<Polygon>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>absolute</altitudeMode>
<outerBoundaryIs><LinearRing>

<coordinates>
175.0,-42.0,30000.0
175.0,-35.0,30000.0
180.0,-35.0,30000.0
180.0,-42.0,30000.0
175.0,-42.0,30000.0</coordinates>

</LinearRing></outerBoundaryIs>
</Polygon>

</Placemark>

...

</Document></kml>

Bounds

API endpoint: kml/bounds (GET)

This endpoints return the bounding box around all current samples or only around the users persi-
nal samples.

Parameters:
Name Format Default Description
personal boolean false If set to true, the bounding box will be restricted to

only personal data (only works correctly when logged
in).

Example:

kml/bounds?personal=true

Result:

[4.406344,49.780712,9.974034,52.38942]

Measurement

API endpoint: measurement/id (GET)

This endpoint returns the measurement with the given a measurement “id” via path variable.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 25 of 60

Example:

measurement/9094016899509432825

Result:

{
"id":9094016899509432825,
"client":"WideNoise/3.3.0 66 (Linux; U; Android 2.2.1; HTC Wildfire)",
"event":"WideNoise",
"ip":"82.44.210.137",
"request_ts":1346413418000,
"average_db":67.720306, "average_raw":0.024161,
"device":"HTC Wildfire",
"duration":5.0,
"lat":51.488155,"lon":-0.30690053,
"city":"Wealden","state":"England","country":"United Kingdom",
"perception_feeling":0.8,"perception_disturbance":0.2,
"perception_isolation":0.0,"perception_artificiality":1.0,"
samples":"[

\"0.16467011\",\"0.050304513\",\"0.022746556\",\"0.016479235\",
\"0.014700989\",\"0.014404921\",\"0.014220835\",\"0.013906292\",
\"0.013719226\",\"0.012825372\",\"0.012966252\"]",

"tags":"[\"lawn mower\"]",
"sample_ts":1346413392000,
"uid":"355797046081545",
"map_data":"{

\"geo_coord\":[-0.30690053,51.488155],
\"average_db\":67.720306,
\"timestamp\":1346413392,
\"duration\":5}",

"location_precision":"net", "location_accuracy":140.0,
"user_estimate":0.0,
"tagList":["lawn mower"]

}

Check for Update

API endpoint: (personal/)hasBeenUpdated (GET)

This endpoint allows to check if measurements have been recorded since a certain date. The
corresponding URL can either be called with or without the prefix “personal”. When using the
prefix only personal samples are considere. This only works when logged in.

Parameters:
Name Format Default Description
since YYYY-MM-DD_HH:mm:ss required Date to check for updates after.

Example:

hasBeenUpdated?since=2012-07-09_10:00:00

Response:
true if a sample was recorded since the given date
false if no sample was recorded since the given date

Average Decibel Value

API endpoint: (personal/)averageDBValue (GET)

2012 c© Copyright lies with the respective authors and their institutions

Page 26 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

This endpoints returns the average dB value for a given timespan. The data considered can be
limited to personal data bys using the prefix “personal”. There also exist several short hand URLs
for certain timespans, which are self-explaining:

• averageDBValue/last/day

• averageDBValue/last/year

• averageDBValue/last/month

Parameters:
Name Format Default Description
young YYYY-MM-DD_HH:mm:ss required Youngest sample to consider. Excludes the usage of

“since".
old YYYY-MM-DD_HH:mm:ss required Oldest sample to consider. Excludes the usage of

“since".
since YYYY-MM-DD_HH:mm:ss required Considering all samples since this date. Excludes the

usage of “young" and “old”.

Example:

averageDBValue?since=2012-07-09_10:00:00

Result:

68.4195917758305

Latest Data

API endpoint: (personal/)latestData (GET)

This endpoint allows to retrieve the latest recorded data. When specifying the prefix “personal” this
will be limited to personal data. Note that some parameters are only available for the non-personal
URL.

Parameters:
Name Format Default Description
amount int not required Amount of latest samples to return.
days int not required Limit to samples from last few days (only non-

personal).
filter boolean not required Filter samples with (0,0) coordinates are not consid-

ered (only non-personal).

Tags

API endpoint: tags (GET)

Allows to retrieve all tags in a certain area.

Parameters:
Name Format Default Description
bbox double,double,double,double not required Bounding box (min_lon, min_lat, max_lon, max_lat) to

select tags from.
limit int not required Limit the number of different tags.

Example:

tags?bbox=-0.364,51.45,-0.270,51.489

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 27 of 60

Result:

[
{

"latitude":51.46800457798164,
"longitude":-0.3284920506605505,
"latitudeTop":51.471535, "latitudeBottom":51.463463,
"longitudeLeft":-0.3307655, "longitudeRight":-0.32164916,
"name":"garden",
"widenoiseId":"359918045471257",
"event":"WideNoise",
"count":545

},

...
]

Continents

API endpoint: continents (GET)

Returns the number of measurements for different continents for the last few days.

Parameters:
Name Format Default Description
limit int not required Number of days to calculate the histogram from.
array boolean false Specifies if the result will be a map of two arrays or a

list of (continent, count) tuples.

Example:

continents?amout=3

Result:

{
"Africa":317,
"Asia":8483,
"Australia":141,
"Europe":15025,"
North America":835,
"South America":59

}

Coverage

API endpoint: coverage/data (GET)

Calculates the spatial coverage for each user of a designated area.

2012 c© Copyright lies with the respective authors and their institutions

Page 28 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Parameters:
Name Format Default Description
bbox double,double,double,double required Bounding box (min_lon, min_lat,

max_lon, max_lat) for coverage to
apply to.

from YYYY-MM-DD_HH:mm:ss minimum Restricts to data recorded after the
given data.

until YYYY-MM-DD_HH:mm:ss maximum Restricts to data recorded before the
given date.

width int 2000 The coverage alogrithm uses a grid in-
ternally. Specifies the grid’s width.

height int 2000 The coverage alogrithm uses a grid in-
ternally. Specifies the grid’s height.

radius int 10 For each sample the covergae algo-
rithm draws a point to a grid. This spec-
ifies it’s radius. The radius can either be
in meters or on grid cells (default).

meters int false Sets wether the radius is interpreted as
grid cells (false) or as meters (true).

sortedByCoverage boolean true The returned users can either be
sorted by sample count or by coverage.

onlyRegistreredUsers boolean true Sets if only statistics for registered
users are returned.

overall boolean false If set to true an overall coverage ag-
gregating all users will be calculated.

Example:

coverage/data?bbox=-0.364,51.45,-0.270,51.489&from=2011-01-09_10:00:00
&radius=200&meters=true&sortByCoverage=true&onlyRegisteredUsers=false

Result:

[
{

"a":"Not Registered",
"b":{
"coveredAreaPercentage":2.578125,
"measuredGrids":103125.0,
"count":77.0,
"coveredArea":1704850.3223186063,
"missingGrids":3896875.0

}
},{"

"a":"Some Name",
"b":{
"coveredAreaPercentage":2.501625,
"measuredGrids":100065.0,
"count":80.0,
"coveredArea":1654262.763663625,
"missingGrids":3899935.0

}
},

...
]

2.4 Data Processor

All data that are sent to the REST server are written as they are to the database. The information,
stored in the requests, are extracted from an independent data processor.

The data processor queries every three second for new data and tries to parse them. It is able
to detect invalid data and can associate all data to their corresponding event. New and therefore
unknown data object are treated as invalid and hence don’t disturb the work of the data processor.

The data processor consists of four components as depicted in Figure 2.9. They are:

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 29 of 60

REST Server

Web Application

MySQL Database

Request Parser

Tag Extractor

OpenStreetMaps AppenderLocation Appender

Data Processor

Figure 2.9: Component Overview of the Data Processor

1. Request Parser (see Section 2.4.1)

2. Location Appender (see Section 2.4.2)

3. OpenStreetMaps Appender (see Section 2.4.3)

4. Tag Extractor (see Section 2.4.4)

2.4.1 Request Parser

In the first step the data processor queries for new data from the measurements table identified by
their event and format column’s information. A new data set is identified by an empty state value
(i.e., NULL). All data that has already been handled by the data processor, successful or not, have
a state value different from NULL. Successful ones are identified by a positive value and invalid
ones by a negative value.

First, the column id and the timestamp are extracted from these data, regardless of their type.
Every report data will get the same id as the corresponding raw dataset in the measurements
table. The timestamp is extracted since it is needed to assign malformed tag request to their
corresponding reports (more on this bellow).

The type of the current raw data is determined in the next step. In order to archive this, the data
processor checks the JSON object from the rawdata column for the following information:

WideNoise report request : Does the JSON object contain the fields average_raw, average_db,
device, duration,geo_coordinate, perceptions, samples, timestamp, and hash? Does the
geo_coordinate JSON array contain exactly two values (latitude and longitude)? Does the
perceptions JSON object contain the fields artificiality, disturbance, feeling, and isolation)?

WideNoise tag request : Do the JSON object contain the fields timestamp, tags, and hash?
Does the JSON tags array contain at least one value?

WideNoise Tweet request : Does the JSON object contain the fields uid, device, statuses, and
hash?

Air Quality App report request : Does the JSON object contain the fields co_1, co_2, co_3,
co_4, device, geo_coord, hum, no2_1, no2_2, o3_1, temp, timestamp, user_data_1, voc_1,

2012 c© Copyright lies with the respective authors and their institutions

Page 30 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

and hash? Does the geo_coord JSON array contain exactly two values (latitude and longi-
tude)?

The data set is marked as invalid if the current JSON in the rawdata column didn’t match any of
the patterns above. In such a case, the state value of the corresponding measurements entry is
set to “-1”.

The rawdata is parsed based on the type that was detected by the patterns above. Depending on
the type the following actions are performed in addition to a mere extraction of data:

WideNoise report request : The data processor changes the timestamp to that one recorded by
our REST server if it lies behind that one. Since there was a type in the first WideNoise iOS
version that transmitted the location accuracy, it checks for the field location_accurancy if
there is no value for location_accuracy, when the request was received by our REST server.

WideNoise tag request : Since the WideNoise Android version that we get from WideTag had
the bug that it didn’t contain the information to which report it belongs, the data processor
checks for the existence of the id field. It queries for the last report request received from the
current device (identified by its uid) and uses that id value. Then it removed all leading and
trailing whitespaces from every tag contained in the JSON tag array.

WideNoise Tweet request : Since there was a bug in the early version of the Tweet request the
data processor replaces every occurrence of a double quote sign from the contained Twitter
status messages with a single quoute sign. This is necessary since the double quote sign
is used by JSON as separator and would obstruct the JSON parser from parsing the JSON
object.

Air Quality App report request : Since the Air Quality App is still in a very early stage, there are
no special treatments for the corresponding data.

The IP source address is extracted from the HTTP header of the header column if the ip column
contains the IP address of our proxy server. This is currently everytime the case since the Ev-
eryAware server is located in our internal network. The IP information is found in the x-forwarded-
for header field if present. It is set to NULL if there is no such header or it contains the value
unknown.

Afterwards the information from the client and event column are copied to the parsed object. The
parsing of one measurement is finished by storing it in the database an mark the corresponding
measurements entry as processed successfully (i.e., the state value is set to “1”).

2.4.2 Location Appender

Since a lot of measurements didn’t contain any location information, we decided to evaluate the
source IP address of the measurements. Reports without a real location information are identified
by their lat and lon content which has to be zero as well as the content of location_precision which
should be “dev” (the default value).

To retrieve additional location information, we query the free IP address geo-location tool IPInfoDB.
If IPInfoDB responds with a location, the data processor writes this information to the correspond-
ing report and changes the value of location_precision to “ip”.

If we didn’t receive any location information, the data processor writes “none” in the loca-
tion_precision column.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 31 of 60

2.4.3 OpenStreetMaps Appender

In order to enrich the reports with additional information, the data processor queries Open-
StreetMaps25 for more location information about the stored location (identified by its latitude and
longitude value). The data processor writes the received city, state, and country name to the
corresponding report columns.

2.4.4 Tag Extractor

In the last stage, the data processor extracts the tag information of every report into a separate
table called tags. This information is used by the map view on the EveryAware WideNoise web
page. Every tag data set is enriched with the id of the source report, the geo-location (i.e., latitude
and longitude), the name of the event during that the tag was captured, the uid of the source
device, and the Ubicon account user name, if existent.

2.5 Ubicon

Ubicon is a web framework supporting event and user management simultaneously. The following
sections give an overview of about its architecture and describe the event category WideNoise.
WideNoise features access to and visualization of noise samples recorded by individual users.

2.5.1 Overview

As mentioned before, the Ubicon framework supports event as well as user management. This
section will first introduce the event management concept and then describe how the user man-
agement is designed.

Event Management

Events are the basic building blocks of the Ubicon framework. Each event is an instantiation of an
event category. An event is identified by an unique id. The id is used to define the event’s URL. All
pages belonging to the same event share the same prefix:

/event/{id}/**.

This allows to run several instances of the same event category on the same server. While the
event type is the same, the content can be different. The functionality is shared. For example, if one
event category is providing a system for managing a conference, each instantiation is associated
with a single conference. Or if one event category is taking care of providing a data collection
framework for certain events like a football game or a rock concert, the different instantiations can
cleanly separate the collected data. An event instance is instantiated by an entry in the data base.

Section 2.5.2 gives a detailed example of an event category called “noise", which provides func-
tionality for collecting and displaying noise data.

User Management

The user management is an integral part of Ubicon. It has been designed to support a consistent
user experience spanning the different events the Ubicon framework can host. First and foremost
it provides basic functionality including

25http://wiki.openstreetmap.org/wiki/Nominatim

2012 c© Copyright lies with the respective authors and their institutions

/event/{id}/**
http://wiki.openstreetmap.org/wiki/Nominatim

Page 32 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

• user registration

• user login

• password reset and

• editable user details.

These features are available through any event hosted by the Ubicon framework. While they share
the same functionality the user interface can be adjusted for each event category individually.

2.5.2 WideNoise

The “noise” event category provides functionality to aggregate, summarize and display noise re-
lated data collected by the WideNoise smartphone application (see D1.1 and D3.1). It provides
several static pages like the front page and the about pages. Figure 2.10 shows screenshots of
the front and about pages. For the remainder of this section we will talk about the “noise” category
instance “widenoise”.

The front page of the event “widenoise" is accessible using the URL

/event/widenoise.

This is also the common prefix for all further URLs concerning the “widenoise" event. All other
URLs in this section will relative to this prefix.

The front page provides access to all important functionality of and information about the “wide-
noise” event and allows sharing the event on Twitter or Facebook as is illustrated in Figure 2.11.

The about page is accessible using the URL

about.

It describes the project in detail and provides support for example by answering frequently asked
questions.

The remainder of this section covers the statistics displayed on the front page as well as personal
statistics and data accessible by the user. Afterwards a page is introduced summarizing the spatial
coverage concerning noise samples of a designated area. Then the map page is introduced which
displays noise data as well as other collected data. Finally one subsection explains how users are
identified using the so called “WideNoise id”.

Statistics

Several statistics have been implemented. Some of the are shown directly on the front page.
Some are only visible to the user personally. Others are implemented using separate pages like
the spatial coverage for a designated area. These statistics are described in detail in this section.

Front Page Statistics The front page provides several summarizing views on the data. These
views use data provided by the REST server. Below the views are listed with reference to the URLs
they are using. For further details on the URLs please refer to Section 2.3.5.

• A histogram summarizing the number of measurements for each continent for the last three
days (see Figure 2.12(a)). The histogram is calculated using data from the API URL

continents.

ÆEvery

Aw
ar

e

/event/widenoise
about
continents

D2.1: First prototype of and interim report on web-based infrastructure Page 33 of 60

(a
)

Fr
on

tp
ag

e.
(b

)
A

bo
ut

pa
ge

.

Fi
gu

re
2.

10
:

S
ta

tic
pa

ge
s

of
W

id
eN

oi
se

ev
en

to
ft

he
“n

oi
se

”c
at

eg
or

y.

2012 c© Copyright lies with the respective authors and their institutions

Page 34 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

(a) Sharing functionality on front page.

(b) Shared content on Facebook.

(c) Shared content on Twitter.

Figure 2.11: Social sharing functionality on the “WideNoise” event’s front page.

• A table listing the registered users with the most samples overall and a table listing the
registered users with the most samples covering the last two months (see Figure 2.12(b)).
The user statistics are not accessible using a REST interface as of yet.

• A table showing latest recordings and a table with average values for the last day, month and
year (see Figure 2.12(c)). The latest recordings can be clicked on leading to the map view
focusing on that specific sample. The users’ latest recordings and the average values can
be accessed using the data from

latestData

and

averageDBValue.

• A scatter plot showing the dB values for the measurements spanning the last three days (see
Figure 2.12(d)). The scatter plot is parsed from the same data as the table showing latest
recordings.

Personal Statistics The personal statistics can be accessed by the user by referring to the URL

personal.

A screenshot of this page is shown in Figure 2.13.

This page displays the latest recordings of the user as well as a scatterplot of her latest measure-
ments and provides a KML file export (Keyhole Markup Language) containing all measurements of
that user to display for example in Google Earth (see “Download KML" in Figure 2.13). This data
can also be accessed using the REST server using the URL

kml?personal=true

Again, see Section 2.3.5 for reference.

ÆEvery

Aw
ar

e

latestData
averageDBValue
personal
kml?personal=true

D2.1: First prototype of and interim report on web-based infrastructure Page 35 of 60

(a) Histogram showing measurment count by continent spanning the last three days.

(b) Most active users.

(c) Latest recordings and average decibel values.

(d) Scatter plot of measurements.

Figure 2.12: Front page statistics for the WideNoise event of the “noise” category.

2012 c© Copyright lies with the respective authors and their institutions

Page 36 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 2.13: User statistics for the WideNoise event of the “noise” category.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 37 of 60

Table 2.1: Coverage page URL parameters.
Name Format Default Description
bbox double,double,double,double required Bounding box (min_lon, min_lat, max_lon, max_lat)

specifying the area to to calculate the coverage of. A
corresponding rectangle is shown on the map on the
coverage page.

from YYYY-MM-DD_HH:mm:ss not required Specifying the first measurement to consider for the
coverage. This date is displayed.

until YYYY-MM-DD_HH:mm:ss not required Specifying the latest measurement to consider for the
coverage. This date is displayed.

reload int no reload Time interval to reload coverage data.
style String not required Can be set to “rome” or “fullscreen” for different page

styles.
showCoverage boolean no reload only applicable to style “fullscreen”. This will trigger if

explicit coverage information is shown or not.

Coverage The coverage page is accessible using the URL

coverage.

Figure 2.14 shows a screenshot of the coverage page. The coverage page allows to designate
an area and a timespan as well as a perimeter covered by each measurement. It then computes
the spatial coverage for each user in the designated area. Besides calculating the coverage for
registered users only, the coverage page can be configured to show the coverage of not registered
users as well. They will show up with the name “Not Registered”. Several designs of the page
are available. The exact URL parameters to customize this page are shown in Table 2.1. The
table only includes those parameters specific to the visualization. The data specific parameters
are described in Section 2.3.5 for the URL

coverage/data.

The algorithm used to calculate the coverage is grid based. An equally spaced grid is placed over
the designated area. Each grid cells corresponds to a pixel of a binary image. Each measurement
is drawn as a circle with the radius derived from the specified perimeter around the measurement.
The coverage is calculated from comparing the amount of painted pixels and their corresponding
area against those pixels which have not been painted.

Map

The map page is available by accessing the URL

/event/widenoise/map.

Figure 2.15 shows a screenshot of the map page. It shows an aggregated view on all the noise
measurements. Using the default view, each marker on the map represents a cluster of noise
measurements. The color visualizes the average decibel value of the cluster and the number on
each marker represents the number of measurements the cluster contains. When clicking on a
cluster a popup is showing more details about the cluster including

• average dB value,

• number of recordings,

• youngest and oldest sample,

• perception values as recorded by the WideNoise smartphone application (see Deliverable
3.1) and

• a list of tags assigned to samples contained by the cluster.

2012 c© Copyright lies with the respective authors and their institutions

coverage
coverage/data
/event/widenoise/map

Page 38 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure
2.14:

C
overage

page
ofthe

“W
ideN

oise”event.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 39 of 60

(a
)

D
ef

au
lt

vi
ew

.
(b

)
C

on
tro

ls
ex

pa
nd

ed
an

d
di

sp
la

yi
ng

ag
gr

eg
at

ed
cl

us
te

ri
nf

or
m

at
io

n.

Fi
gu

re
2.

15
:

M
ap

pa
ge

of
th

e
“W

id
eN

oi
se

”e
ve

nt
.

2012 c© Copyright lies with the respective authors and their institutions

Page 40 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

(a)
G

rid
view

.
(b)

N
o

clusters.

Figure
2.16:

D
ata

representations
on

the
m

ap
page

ofthe
“W

ideN
oise”event.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 41 of 60

(a) Zoom controls, share and decibel ranges. (b) Trigger clustering, tracking
and layer switcher.

(c) Tagcloud.

Figure 2.17: Elements on the map page of the “WideNoise” event.

2012 c© Copyright lies with the respective authors and their institutions

Page 42 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 2.18: Tagcloud functionality on the map page of the “WideNoise” event..

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 43 of 60

Table 2.2: URL parameters for the map page of the “WideNoise” event.
Name Format Default Description
id long not required Tries to retrieve a certain measurement by its id and

zooms in on that sample opening a popup for additional
information.

lon double not required Specifies a longitude value to focus on. Can only be
used in combination with “lat".

lon double not required Specifies a latitude value to focus on. Can only be used
in combination with “lon".

zoom double not required Specifies an initial zoom level. Can only be used in
combination with “lon" and “lat".

promotion boolean false If “promotion” is set to true the record tracking fea-
ture is enabled by default and at the bottom left of the
screen three QR-Codes are displayed one leading di-
rectly to the map page and the other two linking to the
WideNoise smartphone applications on Apple and An-
droid.

The top left corner of the map view shows several controls that allow zooming. The plus and minus
signs allow to zoom in and out. The buttons below that are used to either zoom on all the data on
the world or to focus and zoom in only on personal data. The color scale illustrates which decibel
values are mapped to which color. The “share” button provides functionality to share the current
view on the map on Twitter or Facebook.

The top right corner of the map shows three buttons. The rightmost one provides a layer switcher
which allows to select an OpenStreetMap26 base layer or a base layer provided by Google27 (satel-
lite view). There are four overlays to choose from:

• “All”, which shows all the data.

• “Grid”, which clusters measurements using a grid.

• “Tag Area”, which shows the tag area when a tag is hovered in the tagcloud box

• Personal (only when logged in), which shows only the personal samples. Personal samples
are displayed with a white border instead of a black one.

The middle button allows to track measurements as they come in. When a sample is recorded
the map focuses on that measurement and automatically displays the corresponding popup. The
leftmost button allows to disable clustering. The measurements are shown stacked upon each
other.

At the right bottom a tagcloud is displayed which shows the tags assigned to samples in the
currently viewed section of the world map. If a tag is hovered an area is highlighted, where this tag
occurs. When the hovered tag is clicked the map zooms into the highlighted area.

The map view also supports several URL parameters. Those are described in Table 2.2.

The map page is implemented using OpenLayers28 and displays KML files. These KML files can
be accessed using the URL

kml

or

kml?personal=true

for personal data.

26http://www.openstreetmap.org
27http://maps.google.de
28http://openlayers.org/

2012 c© Copyright lies with the respective authors and their institutions

kml
kml?personal=true
http://www.openstreetmap.org
http://maps.google.de
http://openlayers.org/

Page 44 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 2.19: Profile page.

User

As mentioned in the sections about personal statistics and the map page the user has several
possibilities to access personal data (see Figures 2.13 and Figures 2.15). The user can also enter
a set of personal information on the profile page. The profile page can be accessed using the URL

settings.

Figure 2.19 shows part of the profile page.

In order so associate a user account with the data collected from a smartphone, the data is always
sent including a so called “WideNoise id”. A WideNoise id is the unique device id derived from
the cell phone. On Android phones this id is the IMEI (international mobile equipment identity) for
GSM (Global System for Mobile communication), the MEID (Mobile Equipment Identifier) or ESN
(Electronic Serial Number) for CDMA (code Division Multiple Access).

Each user can connect to a single WideNoise id. This is possible by logging in or registering an
account from the cellphone. The dialog allows to backup the old WideNoise id and set the new
one.

ÆEvery

Aw
ar

e

settings

D2.1: First prototype of and interim report on web-based infrastructure Page 45 of 60

Chapter 3

Gaming Platform

3.1 Introduction

In the EveryAware project subjective data, i.e. information about what people think or how people
feel, have a central role. Through the analysis of this sort of information we expect to understand
the awareness dynamics which will eventually lead to behavioral shifts. To gather subjective data
can be a treacherous task because they can be obtained, by definition, only by humans. There
are several strategies to get these information. The most common approach is data mining, for
example by performing a web-crawling of a social network. In this way, people opinions are gath-
ered together with a lot of less useful information, and it is difficult to isolate the interesting part.
Beside this, the approach is implicitly “passive”, let us say just observational, so it may be subject
to a lot uncontrolled, and often unknown, biases. A more direct approach is needed, in order to
get a better kind of subjective data.

The use of web-based games [von Ahn, 2006] for research purposes is a fast spreading phe-
nomenon, changing the way research activities are conducted and how data are generated in
many scientific fields. Two paradigmatic examples are Foldit1 [Cooper et al., 2010], a game in
which players are challenged to guess the 3D structure of a protein, and Planet Hunters2 [Fischer
and et al., 2011], by which participants can help in identifying new extra-solar planets using NASA
data of star brightness.
The above mentioned projects have in common the involvement of individual volunteers or net-
works of volunteers, many of whom may have non specific scientific training, to perform or man-
age research related tasks in scientific projects. In this sense there are two examples of citizen
science [Arnstein, 1969; Goodchild, 2007; Paulos et al., 2009], i.e., a long-standing series of pro-
grams traditionally employing volunteer monitoring for natural resource management. In recent
years, also thanks to the Web 2.0 explosion, citizen science projects are becoming increasingly
focused on scientific research [Nosek et al., 2002; Salganik and Watts, 2009] and amazing results
have already been obtained. For example, the 3D structure of viral enzymes that challenged scien-
tists for years has been discovered thanks to the efforts of Foldit players [Khatib and et. al, 2011],
and new candidate planets identified by Planet Hunters’ players managed to survive data verifica-
tion tests [Fischer and et al., 2011]. It is worth to note how, in both cases, the engaging graphic
interfaces boosted the participation quantitatively and qualitatively. In particular, in the Foldit case
the game motivation has also proved to be a fundamental ingredient for web-based experiments
realization, making the experiment results more numerous and reliable and, at the same time, less
expensive than in other kind of experiment.

In a parallel development, the idea of crowdsourcing is at the heart of online labor markets such
as Amazon Mechanical Turk (AMT), where a job is distributed by employers in small sub-tasks

1http://fold.it
2http://www.planethunters.org

2012 c© Copyright lies with the respective authors and their institutions

http://fold.it
http://www.planethunters.org

Page 46 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

that workers can perform. Interestingly, AMT has proven to be useful also for scientific pur-
poses [Chilton et al., 2009; M and JW, 2009; Paolacci et al., 2010], e.g., as a powerful tool for
recruiting experimental subjects and facilitating their reward through monetary payoffs. Early expe-
rience with crowdsourced experiments has paved the way to the recognition that web experiments,
even despite having a partial control of the way participants are recruited and of the context in
which tasks are executed, can be successfully used to study human collective behavior and cogni-
tion. The blog http://experimentalturk.wordpress.com/ presents an early review of existing
replications on AMT of classic experiments on individual and interactive decision making, and
provides first elements of validation of experimental practices in the web [Siddharth and Duncan,
2011]. AMT has also opened the door for exploration of processes that outsource computation to
humans on a large scale. These human computation processes hold tremendous potential to solve
a variety of problems in novel and interesting ways. Human ability to easily solve tasks which are
difficult to solve by setting up efficient algorithms has been largely exploited for instance by Google
in labeling images (through the ESP collaborative game [von Ahn and Dabbish, 2004]), language
translators, etc. Although the tenets of human computing are being increasingly exploited, its use
in the scientific community still lacks of systematization. The realization of a single project often
requires substantial effort and web-based experiments are still far from being standard research
tools. The lack of tools that can greatly simplify and standardize the design of web games and ex-
periments is a major bottleneck in the exploitation of such new research opportunities. Despite its
versatility, [Paolacci et al., 2010] AMT has not been conceived as a platform for experiments. AMT
itself offers, as other web sites do, some visual tools to develop simple interfaces (e.g. for polls) but
it lacks infrastructures for the realization of games, which require more complex interactions, and
thus more complex interfaces. Moreover AMT is based on economic motivations.

Experimentalists are left with the task of designing their own software solutions to manage inter-
actions among participants and to build effective interfaces. Moreover, individual solutions to such
problems often remain insulated with little or no cumulative growth of tools and solutions. This
is the reason why it is important to develop a versatile platform to implement social games, to
take advantage of the game motivation. This is the aim of Experimental Tribe, or XTribe, the word
“game” being intended as an interaction protocol among a few players implementing a specific task
as well as a synonym of experiment on interactive behavior.

In the EveryAware project, the role of the Experimental Tribe platform will be to make easy to
set up “games” with the purpose of gathering subjective data about environmental issues, urban
strategies and other topics related to the project.

Figure 3.1: A screenshot of the XTribe homepage.

ÆEvery

Aw
ar

e

http://experimentalturk.wordpress.com/

D2.1: First prototype of and interim report on web-based infrastructure Page 47 of 60

3.2 Experimental Tribe

Experimental Tribe (ET) is a platform for web-based experiments and social computation. It is
currently available in beta version at www.xtribe.eu as showed in Fig. 3.1. ET is aimed at both
gathering otherwise separate efforts to use web resources for scientific purposes and at providing
the community with a tool to design experiments on the web, bypassing much of the “hard work”.
The benefit is twofold: on the one hand, it allows virtually any researcher to realize his own experi-
ment with minimal effort, paving the way of the use of the web as a standard “laboratory” to perform
experiments. On the other hand, it can be a strong “basin of attraction” for people willing to partic-
ipate to experiments, making in this way recruitment much more easier than for single-experiment
platforms.

The idea behind ET is quite simple. When implementing a web experiment there are a lot of parts
which have almost nothing to deal with the experiment itself and are common to almost all the kinds
of web experiment, such users handling, interface hosting, security and privacy issues, etc. ET
can take care of all these aspect allowing researchers to focus only on the interface and the logic
part of the experiment. Thanks to ET it is possible to implement a simple multi-player web-game,
with a users registry, a rank system and a guide page in few hours.

There are several active games on the platform. The most interesting in the context of the Ev-
eryAware project are Blindate and Joe’s City Race.

3.2.1 Blindate

Blindate is a collaborative game, very close to the well known Schelling’s Games first introduced
in the early ’60s [Schelling, 1960]. In Schelling’s original version (one of many similar problems),
two players, unable to communicate with each other, were asked to find a point on a map where to
meet, i.e. they had to find a strategically salient “focal point” among a potential infinity of solutions
to the coordination problem. Since Schelling’s seminal contribution, many versions of “Schelling
games” have been used to investigate strategic salience, i.e. the individual ability to guess recur-
sively what the other guesses that he will guess is salient, an so forth [Crawford et al., 2007; Mehta
et al., 1994].

The game

In our custom version, two players, again unable to communicate to each other, are shown a
portion of the map of a real city and are asked to point to a location in a given area where they
think it is more likely to meet each other. The reward is a score depending inversely on the distance
between the guesses. They can guess for a maximum of 5 times if their guesses do not match. In
addition, after the choice, participants may optionally explain with suitable tag words the reason of
their choice. These tag words or, alternatively, the direction or the distance between the previous
guesses can be given to the other player as hint. A set of screenshots of the interface is reported
in Fig. 3.2.

There is an interest in the results of the game also from a game theory point of view but our
purpose is to get an annotated map of the focal points of the city. This map it is important because
gives us information about urban dynamics, telling us about the most important aggregation points.
This game will be also used to make polls about urban environmental condition. Through Blindate
we can also ask people to meet in the most polluted place, in the most quiet place, or in the most
safe place. In this way, we will actually make polls in the shape of a game about pollution or noise
getting people to contribute better and more.

2012 c© Copyright lies with the respective authors and their institutions

www.xtribe.eu

Page 48 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 3.2: A set of screenshots of the Blindate interface.

Preliminary results

Until now Blindate gathered almost one thousand guess for the city of Rome. Even if the number
of results is small we can start to figure out in what direction they will point at. First of all we can
draw, and report in Fig. 3.3, a first map of Rome focal points. In this map we can see some obvious
focal points such as famous squares, crossroads or bridges but there is also some surprise: the
Coliseum is not a focal point, because it is too large, and actually it is quite rare to give a rendezvous
at the Coliseum without further specifications. Going more deep into the dynamics of the game,
we analyzed the ratio of winning matches at each turn, finding that the 55% of the players matched
at the first guess. Then, of those who arrived at the second turn, only the 35% matched, a quite
lower value. At the third turn the value slightly increases, at the fourth and at the fifth there is a very
small value. The results are shown in left part of Fig. 3.4. This seems to point out the existence of
a shared knowledge about the focal points, because people match very often at the first attempt.
In the following attempts they seem to worsen their performances, which is apparently a paradox,
since, after the first attempt, they begin to get information about the other player’s guesses. To
analyze better this aspect, we studied also how people improve their result during a match. The
right part of Fig. 3.4 shows, for each of the five turns, the average distance between the guesses
of the two players. At the first turn the distance is quite big but soon it decrease at the second turn

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 49 of 60

Figure 3.3: Rome map of focal points drew with the position guessed in Blindate. Redder points
indicate an higher density of guess, corresponding to a focal point.

Figure 3.4: In the left graph, the ratio of winning matches at each turn (55% of match at the first
turn; of the remaining 45% the 35% matched at the second turn and so on). In the right graph, the
average distance between the guess of the two players at each turn of the game.

2012 c© Copyright lies with the respective authors and their institutions

Page 50 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

and reaches a minimum at the third turn. Then, at the fourth and fifth turn it increases significantly,
meaning worse performances. Considering the fact that, after each guess, some information about
the other player choice was given to the player, the worsening of the performance may point at the
fact that not always the information its useful. More information may not correspond to better
results. This qualitative result is somehow surprising and will be more deeply analyzed in the
future, when more data will be available.

3.2.2 Joe’s City Race

“Joe’s City Race" is a web game designed to facilitate the analysis of the response of individuals
to environmental information. For this, players are asked to draw a route between two points in a
city, having local information available. At the moment, the game is implemented with traffic data,
however, pollution data from the test cases will be added to the game. Two beta versions of the
game are currently available at www.xtribe.eu, one single- and one two-player, developed using
the ET platform. These are based in four cities, Turin, Rome, London and Dublin. Real traffic data
has been obtained from the Dublin City Council and Octotelematics (for Turin), while for the other
two cities data has been generated using open Street Maps and Google Maps.

Through the game responses to several questions are aimed for. One such question is how much
information does a player need in order to observe a change in behaviour. In real life, how much
information on the state of immediate neighbourhood is required for the citizen to be able to opti-
mize the route. For this, in a single-player version, the platform displays different amounts of traffic
information in each game, which will allow for an analysis in this direction to be performed. This
is useful both from the social science point of view and for optimising future applications that offer
visualisation of routing and traffic information.

Secondly, the behaviour in a context with social influence can be analysed. Specifically, in a multi-
player version, players can be aware or not of the movements of their opponents. If imitation
appears (as it does in many real life situations), routes for players that could see one another will
be very similar. However, the imitation behaviour could contradict the purpose of the game, which
is minimising driving distance and time, so an analysis of the different strategies could give insight
on the trade-off present in the player population.

Furthermore, a virtual traffic dataset is generated, based on the routes selected by users. This,
analysed in comparison to the real data, can enable identification of traffic features related to street
network topology. Also, the overall response to the real traffic displayed can be studied, showing
whether avoidance of traffic can create jams in other locations of the city.

Future versions of the game will also show pollution data, in order to understand the strategy, if
any, used by people to minimise exposure to pollution while driving or walking.

The game

The single-player version of the game aims to analyse the effect of traffic information, and the
extent of it, on the routes players choose. For this, the game consists of two stages. The game
starts with the user selecting a city to play in (Figure 3.2.2). This leads to the first stage of the
game, when two points are given on a standard Google map, and users are asked to draw their
preferred route. Users draw a route by selecting successive points on the map, in an active green
area (Figure 3.2.2), and then click on the destination to finish. At this point, the second stage
starts, when the same task is repeated, but with traffic information also displayed, colour coded
for each street (red - high to green - light traffic) (Figure 3.2.2). The user has to select again
a route, and the change in strategy will be the effect of traffic information. Different amounts of
such information are displayed (i.e. from a small to a large area around the current location of the
player), in order to enable the study of how player behaviour and performance is influenced by the

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 51 of 60

Figure 3.5: Joe’s City Race: select location.

Figure 3.6: Joe’s City Race: single-player, phase I, no traffic information.

2012 c© Copyright lies with the respective authors and their institutions

Page 52 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 3.7: Joe’s City Race: single-player, phase II, traffic displayed as colours on the streets.

Figure 3.8: Joe’s City Race: score for single-player game.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 53 of 60

Figure 3.9: Joe’s City Race: multi-player.

amount of information. When the second route is complete, a score is given to the user, which
compares the distance and time they obtained to that of the Google Directions Service. A score
larger than 100 indicates a route better than Google, while lower than 100 signifies the route is
not superior. Also, the three routes (stage 1, stage 2 and Google) are displayed for comparison
(Figure 3.2.2).

The multi-player version of the game aims to analyse social influence in choosing a driving route.
The game is organised as a race between two or more players, where the best route wins. In
(randomly) selected games, players can see the movements of their opponents (Figure 3.9), and
choose to follow them, or, on the contrary, select a very different route to the destination. The
behaviour of players can thus be analysed and the social effect studied. The game is played in
a similar fashion as the single-player version, where each player chooses and submits a route
between two points. The score is then calculated for each player, and the highest wins. Again, the
score screen shows the three routes for comparison (player 1, player 2 and Google - Figure 3.10)

The game implementation consists of a few components, which communicate through the Exper-
imental Tribe platform. These are the manager, database and client. The manager extracts traffic
information from the database and sends it to the client, to be displayed on the map. The client
handles all user input and makes requests to the manager accordingly. Due to large amount of
traffic data, several levels of optimisation had to be implemented in order to facilitate data display
in a timely manner. These include database query and index optimisation and server side data
processing.

Preliminary results

A first analysis concentrates on the behaviour shift when players have traffic information available.
Figure 3.11 shows the fraction of single-player games where the route selected by the user has
improved, disimproved or remained the same from the first game stage (without traffic) to the
second (with traffic). This is displayed for different amounts of information available on the map. A

2012 c© Copyright lies with the respective authors and their institutions

Page 54 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 3.10: Joe’s City Race: score for multi-player game.

Figure 3.11: Effect of the amount of traffic information on player performance.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 55 of 60

Figure 3.12: Imitation during multi-player games.

first indication is that the number of players changing their routes when traffic information becomes
available increases with the amount of information. This shows that traffic has to be shown for a
larger area in order to observe a larger behaviour shift. Secondly, the size of the traffic information
displayed affects the ability of users to improve their route. Information which is too restricted leads
to the least improvement, probably due to “greedy" choices. On the other hand, information which
is too large does not provide the best improvement, with medium information being the best. In
the case here, medium information means an area as large as the one where the user can move.
This indicates that there is a limit to how useful enlarging the amount of information is, and this is
maximised through moderate amounts of information.

Secondly, we are interested in the amount of imitation during two-player games. This gives indi-
cation on the influence of society in enhancing environmental awareness. Figure 3.12 shows the
percentage of games where the two players choose the same route, both when they can see each
other on the map, and when they can not. This shows an increase in similarity between routes
when players are aware of the other’s position, indicating that some imitation does appear. Addi-
tionally, we have analysed the distribution of scores with and without social influence (Figure 3.13).
Although these are preliminary results, indications exist that the score are improved, overall, when
players can see each other , showing that imitation and the social effect is useful.

3.3 Technical details

ET has been designed with a modular structure through which most of the complexity associated
to running an experiment is hidden into the ET Server, while the experimentalist is left with the
only duty of devising a suitable interface for the actual experiment. In this way most of the coding
difficulties related to the realization of a dynamic web application are already taken care by the
ET Server and the realization of an experiment should be as easy as constructing a dynamic web
page.

2012 c© Copyright lies with the respective authors and their institutions

Page 56 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 3.13: Score for multi-player games.

3.3.1 Basic entities

The ET web site is build upon Drupal 3 and, beside system administrators, there are two different
kinds of users on it:

1. the experimentalists who publish individual experiments through ET;

2. the players who participate in one or more individual games.

Each published game is as a combination of two intercommunicating parts: the User Interface (UI)
and the Game Manager (GM). The UI is what is visible to players: it is a web page that displays
the game state and receive user input. The GM is in charge to implement the game-dependant
centralized logic, such as choose initial data for each match, gather and process user activity,
assign scores, etc. The communication between the UI and the GM is mediated by the ET Sever.

3.3.2 Technologies for development and communication

The UI is hosted on the ET Server and can be implemented using any modern web technology
such as HTML, JavaScript, CSS or Flash. It is given access to a set of JavaScript API that al-
low the experimenter to easily implement asynchronous bidirectional communication with the ET
Server and, in turn, with the GM. The actual communication is internally carried out by means
of WebSockets; if the user browser does not support them, several fallback techniques (such as
http long polling or multipart streaming) are used. In order to keep this short-message exchanging
efficient we used NodeJS 4 for the server side implementation in conjunction with the Socket.io

3http://drupal.org/
4http://nodejs.org/

ÆEvery

Aw
ar

e

http://drupal.org/
http://nodejs.org/

D2.1: First prototype of and interim report on web-based infrastructure Page 57 of 60

JavaScript library 5. All this complexity, as well as all browser-dependant choices, are hidden to
the experimenter who can send messages by calling a single JavaScript function and can receive
asynchronous messages by registering a callback function.

The GM will be hosted by the experimenter on his own server. This way the scientist is given full
control over the experiment and can directly collect and access resulting data in real time. The
GM can be developed with any server side technology such as PHP, ASP, Perl, Java, NodeJS, etc.
The communication with the ET Server takes place through the HTTP protocol and all exchanged
messages are coded as JSON strings 6 received as post variables and sent back in the body of the
response. If required the GM can initiate a message exchange phase by contacting a dedicated
URL of ET Server over HTTP.

Besides a restricted set of system messages, the game internal protocol is fully elaborated by the
researcher to exchange game-dependant messages between the GM and the UI. Each message
is characterized by a topic (a string) and can carry any kind of parameters, ranging from single
values to arbitrarily complex arrays and objects.

Remarkably, the ET Server automatically takes care of the game setup phase: it allows users to
join each specific experiment and, when enough players are ready, the server creates an instance
of the experiment and notify the game start to the GM and all the players, leading them to the
actual game UI. The server also manage all message exchanging based on instances in order to
allow instance-wide message broadcasting functionalities.

The platform will also handle errors and exceptions: e.g., if a player disconnect unexpectedly, the
system will detect it and notify the instance abortion to the remaining players and to the GM. Since
there is no direct communication between the GM and the UI, the GM will experience no trouble at
all.

A schema of the communication between the ET Server, the player and the GM is shown in Fig-
ure 3.14. Communication between the ET Server, the player browser (left side), and the GM (right
side). ET Server takes of the join phase automatically then it mediates the communication between
the UI and the GM, while handling errors and exceptions

Figure 3.14: Communication between the ET Server and the GM.

3.3.3 Game setup

For each game the ET platform host a page containing game rules, images and a description of
the scientific objectives related with the experiment, possibly reporting obtained results. From this

5http://socket.io/
6http://www.json.org/

2012 c© Copyright lies with the respective authors and their institutions

http://socket.io/
http://www.json.org/

Page 58 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

page a player can learn more about the experiment and decide to participate by playing it.

Since the game has been created for research purposes, the researcher is interested in all sort of
statistics related to players. Therefore anonymous player information can be made available to the
UI and the GM.

While publishing a game, the researcher have to declare how many player are required to start
an instance of the experiment. He may also be interested in grouping and filtering players for
specific purposes, e.g. according to their age, gender, geographical location, nationality, etc. To
this end, ET handles a user registry in which players will be allowed to register, if required, and
play while the system would maintain all the information about them such as scores, ranks, etc.
Furthermore, based on this information, the system may also grant the access to the game only to
certain profiles.

Being in charge of the handling of the user registry, the system would also spare the researcher
from dealing with privacy and security issues since all data will be properly anonymized and, pos-
sibly, encrypted. However, by default, it is still possible for unregistered users to access the games.
Filters are applied only if set by the researcher.

3.4 Further developments of the platform

To summarize, ET handles all the aspects of the realization of web experiments that does not
concern directly the game itself, thus allowing the researcher to focus only on the core of the
experiment, leaving the rest to the system.

The ultimate aim of the project is to allow researchers working in different fields, who lack computer
science expertise, to create web-based experiments and games. In order to achieve this goal, the
first step is to create a set of “default” GMs for games corresponding to the most standard types
of web experiment, such as surveys or coordination games. At the moment, the only “default” GM
available in the platform simply broadcasts to all the players the message received from each one.
The following step will be the realization of a set of graphical tools that will make it possible to set
up a web experiment without writing a single line of code, e.g. a drag and drop-like system that
allows the development of interfaces and the creation of the relative logics.

In the long term, the platform will also come in help when dealing with another typical issue of
web experiments: the recruiting. It is often quite difficult to gather a critical mass of “suitable”
players, but since the game is hosted on the platform, and will be shown on its main page, other
players already involved in other games would probably join. We expect a community of players
to gather on the platform playing different games and also giving researchers feedback about their
experiments. We also expect researchers to spontaneously aggregate into communities, sharing
advices and best experimental practices with each other.

ÆEvery

Aw
ar

e

D2.1: First prototype of and interim report on web-based infrastructure Page 59 of 60

Bibliography

S Arnstein. A ladder of citizen participation. JAIP, 35(4):216–224, 1969. URL http://

lithgow-schmidt.dk/sherry-arnstein/ladder-of-citizen-participation.html.

LB Chilton, CT Sims, M Goldman, G Little, and RC Miller. Seaweed: a web application for designing
economic games. In Proceedings of the ACM SIGKDD Workshop on Human Computation,
HCOMP ’09, pages 34–35, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-672-4. doi:
http://doi.acm.org/10.1145/1600150.1600162. URL http://doi.acm.org/10.1145/1600150.

1600162.

S Cooper, F Khatib, A Treuille, J Barbero, J Lee, M Beenen, A Leaver-Fay, D Baker, Z Popović, and
Foldit Players. Predicting protein structures with a multiplayer online game. Nature, 466(7307):
756–760, August 2010. ISSN 0028-0836. URL http://dx.doi.org/10.1038/nature09304.

V Crawford, U Gneezy, and Y Rottenstreich. The power of focal points is limited: Even minute
payoff asymmetry may yield large coordination failures. Am.Ec.Rev., 98:1443–1458, 2007.

D Fischer and et al. Planet Hunters: The First Two Planet Candidates Identified by the Public using
the Kepler Public Archive Data. arXiv:1109.4621v3, 2011.

MF Goodchild. Citizens as Voluntary Sensors: Spatial Data Infrastructure in the World of Web 2.0.
International Journal of Spatial Data Infrastructures Research, 2:24–32, 2007.

F Khatib and et. al. Crystal structure of a monomeric retroviral protease solved by protein folding
game players. Nat Struct Mol Biol, 18:1175–1177, 2011.

Winter M and Duncan JW. Financial incentives and the “performance of crowds”. KDD-HCOMP
‘09, Paris, France, June 28 2009.

J Mehta, C Starmer, and R Sugden. The nature of salience: An experimental investigation of pure
coordination games. Am.Ec.Rev., (74):658–673, 1994.

BA Nosek, MR Banaji, and AG Greenwald. E-research: Ethics, security, design, and control in
psychological research on the internet. Journal of Social Issues, 58:161, 2002. doi: 10.1111/
1540-4560.00254.

G Paolacci, J Chandler, and P Ipeirotis. Running Experiments on Amazon Mechanical Turk. Judg-
ment and Decision Making, 5(5):411–419, 2010.

E Paulos, RJ Honicky, and B Hooker. Citizen science - enabling participatory urbanism. In M. Foth,
editor, Handbook of Research on Urban Informatics: The Practice and Promise of the Real-
Time City, pages 414–433. IGI Global, 2009. URL http://www.urban-atmospheres.net/

CitizenScience/.

MJ Salganik and DJ Watts. Web-Based Experiments for the Study of Collective Social Dynamics
in Cultural Markets. Topics in Cognitive Science, 1(3):439–468, 2009. ISSN 1756-8765. doi:
10.1111/j.1756-8765.2009.01030.x. URL http://dx.doi.org/10.1111/j.1756-8765.2009.

01030.x.

2012 c© Copyright lies with the respective authors and their institutions

http://lithgow-schmidt.dk/sherry-arnstein/ladder-of-citizen-participation.html
http://lithgow-schmidt.dk/sherry-arnstein/ladder-of-citizen-participation.html
http://doi.acm.org/10.1145/1600150.1600162
http://doi.acm.org/10.1145/1600150.1600162
http://dx.doi.org/10.1038/nature09304
http://www.urban-atmospheres.net/CitizenScience/
http://www.urban-atmospheres.net/CitizenScience/
http://dx.doi.org/10.1111/j.1756-8765.2009.01030.x
http://dx.doi.org/10.1111/j.1756-8765.2009.01030.x

Page 60 of 60 EveryAware: Enhance Environmental Awareness through Social Information Technologies

T Schelling. The strategy of conflict. Harvard UP, Cambridge, Mass., 1960.

S Siddharth and JW Duncan. Cooperation and contagion in web-based, networked public goods
experiments. PLoS ONE, 6(3):e16836, 2011.

L von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006. ISSN 0018-9162. doi: http:
//doi.ieeecomputersociety.org/10.1109/MC.2006.196.

L von Ahn and L Dabbish. Labeling images with a computer game. In CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 319–326, New York, NY,
USA, 2004. ACM. ISBN 1-58113-702-8. doi: http://doi.acm.org/10.1145/985692.985733.

ÆEvery

Aw
ar

e

	Overview
	Data Storage Infrastructure
	Introduction
	Database
	Table dataairqualityapp
	Table datawidenoise
	Table events
	Table measurements
	Table pendinguser
	Table tags
	Table twitter_status
	Table user

	REST Server
	Responses and Errors
	Data Collection
	Noise Endpoints
	Air Endpoints
	Webapp Endpoints

	Data Processor
	Request Parser
	Location Appender
	OpenStreetMaps Appender
	Tag Extractor

	Ubicon
	Overview
	WideNoise

	Gaming Platform
	Introduction
	Experimental Tribe
	Blindate
	Joe's City Race

	Technical details
	Basic entities
	Technologies for development and communication
	Game setup

	Further developments of the platform

