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Executive Summary

Participatory sensing requires the availablity of easy accessible sensor platforms at low-cost. The
EveryAware consortium developed sensing platforms for noise and air quality monitoring. Although
the sensor platforms are not perfect -see results of D1.2 where significant research went into the
testing of the sensors- test cases were developed for citizens to participate in noise monitoring
and air quality monitoring. For noise monitoring, a high proportion of the measurements is made
in an uncoordinated way, by users of the WideNoise App worldwide. In contrast, the air qual-
ity measurements have been made by volunteers participating to highly coordinated monitoring
campaigns, basically due to hardware constraints and the preset objective to use participatory air
quality data to discover spatial patterns in air pollution which is only feasible in a confined area
given the relatively low number of sensor boxes and the high data coverage requirements.

Outline of the document

This document consists of four Chapters. The first Chapter investigates the air quality data that
were collected in the Test Cases. The first main conclusion from these tests is that the AirProbe
system is a reliable system over the entire monitoring and data communication chain. AirProbe
really allows citizens to explore the air quality in their neighbourhoods, to make their own mea-
surements, visualize and interprete them. Combining the sensing activities of the user community
allowed to make a spatio-temporal analysis of the air quality in urban areas in Antwerp, London,
Kassel and Turin. High resolution maps of BC concentrations were obtained from a two weeks
long monitoring campaign and allowed to recognize spatial air quality patterns at street level. Nev-
ertheless, the interpretation of these results prooved to be not straightforward. The data validation,
which is a crucial step in any kind of environmental monitoring but particularly challanging in citizen
science, is very complex using the current system and the proposed data validation steps resulted
in a significant reduction of data volumes.

Chapter 2 is much in line with the results from the noise monitoring presented in D4.1, this time
coverring the entire project period. A total of 48406 noise records were made worldwide during this
period, which is equivalent to 78.74h of noise monitoring. The importance of coupling subjective
information (perception) with the measured data cannot be understated, as it is the former that
permits a judgment to be made as to how the measured data is perceived, turning the number
from sound to noise, and understanding the perception of noise by communities is in turn vital to
policy and decision makers.

Chapter 3 focuses on the subjective data, mainly under the form of tags, collected with the appli-
cations developed by the Project: WideNoise Plus for noise data and AirProbe for air quality data.
The two applications allow users to record data samples and to annotate them with perceptions
and tags. The aim here is to analyze the different resources provided by WideNoise Plus and
to use the underlying annotated information to build a recommendation framework. For this, we
evaluate multiple tag recommendation methods to improve the sensor data collection.

Chapter 4 deals with the analysis of the subjective data obtained by people using our smartphone
apps and our web platforms. In particular, the subjective data consist of noise level predictions,
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sliders and tags in the case of the Widenoise app, and the strategies adopted by users participating
the APIC game/experiment hosted by the XTribe platform. The analysis of the APIC experiment will
be covered in the next section due to the intimate relation between users air pollution perception
and real measurements. An overestimation of pollutant concentrations in phase one is detectable
for all cities. Players located the pollution mainly on main roads and crossroads, while gardens
and rivers where perceived as cleaner. In phase three, i.e. as soon as the AirSquare values are
made available, they changed opinion substantially. This clearly denotes that they were prone to
change their mind.

Dissemination of the results

The results from the noise and air quality monitoring are dissiminated through the project website
http://cs.everyaware.eu/event/overview where the user community and the general public
have free access to the data and summary statistics from the monitoring campaigns.

2014 c© Copyright lies with the respective authors and their institutions
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Chapter 1

Overview

The analysis of the collected data by WideNoise and AirProbe is reported here. The methodology
for data collection is based on the results described in report D4.1 Data Coverage and Interpolation
Methods. For WideNoise, a high proportion of the measurements is made in an uncoordinated way,
by users of the WideNoise App worldwide. In contrast, the AirProbe measurements have been
made by volunteers participating to highly coordinated monitoring campaigns, basically due to
hardware constraints and the preset objective to use participatory air quality data to discover spatial
patterns in air pollution which is only feasible in a confined area given the relatively low number of
sensor boxes and the high data coverage requirements. The distinction between WideNoise and
AirProbe measurements has to be taken into account when analysing the data:

WideNoise AirProbe
Geographical area worldwide confined urban areas
Duration years weeks
Coordination level low very high
Spatial coverage low high within the monitoring area
Temporal coverage low high within the monitoring area

This report includes (i) the analysis of sensor data, (ii) the analysis of subjective data and (iii)
perceived versus measured environment. The analysis of sensor data includes various information
extraction methods for the interpretation of validated sensor data. Because one of the strengths of
coordinated mobile monitoring approach as applied in AirProbe is the increased spatial density of
measurements, special attention is given to the spatial analysis of the sensor data for discovering
spatial patterns (e. g., differences between streets) in air quality. The WideNoise measurements
are snap-shots of a highly volatile sound environment at a given location in space and time, and
are therefore less suited to perform spatial analysis and comparisons between locations. On the
other hand, WideNoise data are more likely made at specific events (i. e., a point measurement at
noisy event) and probably more easily tagged or annotated than the AirProbe data. The analysis
of subjective data and the comparison of the perceived versus measured environment is therefore
based on larger data quantities and probably more representable for the WideNoise data than for
the AirProbe data.

2014 c© Copyright lies with the respective authors and their institutions
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Chapter 2

Analysis of air quality sensor data

This chapter provides an overview of the analyzes that have been performed on the sensor data
that were collected during the EveryAware project for the AirProbe Intl. Challenge for air quality
data. In the Airprobe Intl. Challenge, volunteers from 4 cities, Antwerp, London, Kassel and Turin,
conducted air quality measurements with the sensor box for a period of 4 weeks (see D3.2). Two
weeks before the start of the monitoring, all the sensor boxes were gathered at specific locations
in each city, together withreference devices to perform simultaneous measurements that are used
for model calibration (see D1.2). The city-specific models were used to model black carbon con-
centrations from the sensor measurements. The analyzes of the air quality data is performed for
the different cities separately. It is important to stress that the analysis of the air quality data is part
of the experimental testing set-up for the use and validation of the integrated EveryAware platform.
The air quality maps shown in this report should not be used as validated black carbon maps.

2.1 Data validation

2.1.1 Motivation

Sensor box specific models were used to estimate black carbon concentrations from the sensor
measurements (see D1.2). Additionally in Antwerp the volunteers used micro-aethalometers for
direct black carbon measurement at a 1-sec resolution. These measurements serve as benchmark
measurements for comparison with the estimated black carbon values. The correlation between
the measured and modelled black carbon concentration was calculated for the data series of each
team seperately. Correlations ranged between -0.17 (team 7) and 0.62 (team 1). Timeseries are
plotted in Fig. 2.1. For some of the teams (teams 1, 3, 4, 5, 6, 8 and 10) the correlations are
moderate, for others (teams 2, 7 and 9) the modelled black carbon series is completely different
from the measured black carbon series.

The difference between modelled and measured BC concentrations could be caused by measure-
ment errors (e. g., sensor failure or inapropriate way of making measurements) or modelling errors.
The sensor values of all the three teams where model estimations and BC measurements differed
largely show extensive periods with extremely low sensor variability. These periods occur both in
indoor as in outdoor environments (Fig. 2.2).

It is clear from the examples above that data validation is a critical step in the interpretation pro-
cess of the data. Given the high numbers of data and the fact that the data collection itself is
largely unsupervized and uncoordinated, it is difficult to develop data validation algorithms that are
generally applicable. The validity of each data point that is enterred into the data base is to be
checked in a data validation process. Erroneuos measurements that should be identyfied by the
validation process are, for example, the measurements that are made during the heating-up of
the sensors. Before the start of any data collection, volunteers were asked to switch the sensor
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Figure 2.1: Measerud vs. modelled black carbon for the data collected by the teams in Antwerp.
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Team 2 Team 7 Team 9

Figure 2.2: Overview of the sensor measurements for teams where measured and modelled BC
concentrations differed substantially (teams 2, 7 and 9). The different days of monitoring are
indicated by the black vertical lines (note: seperate runs per day are possible), the grey shaded
area indicates period with reliable GPS connection.
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box on for a period (minimal 30 minutes, preferably longer). The data from this heating-up period
have to be discarded form the outdoor air quality analysis. In addition, data that are collected with-
out respecting the heating-up period of sensors typically show the combined effects of fluctuating
gas concentrations and a more general increasing or decreasing trend which is due to the sensor
heating. These data should be identyfied and treathed differently in the final analysis. Also failing
sensors or sensors that go outside their output signal range inevitably lead to a wrong estimation
of the black carbon concentration. Failing sensors should be identified and deleted from further
analysis. The same holds for failing GPS data. The GPS (like any other measurement device) is
not perfect. Occassional fluctuations which are observed in urban environment will lead to a wrong
positioning of the air quality measurement, therefore deteriorating the spatial analysis. A validation
of the GPS data should be included to decrease these geo-reference errors. The collected data
is a mixture of indoor and outdoor measurements (i. e., participants keep on measuring when they
enter a shop or tram). These data should not be mixed, i. e., indoor data should be exluded as
much as possible from the analysis of outdoor air quality. Finally, the way that the measurements
are performed is not controlled. An explaination about a good measurement practice was given
to the participants, but it is unknown whether these guidelines were strickly followed all the time.
Blockage of the free air entrance by clothes, for example, is a potential source of measurement
error.

The data validation process applied in this report consist of the following steps:

1. the identification of errors in the measurement time;

2. the identification of sensor measurements during heating-up;

3. the identification of errors in geo-location GPS values;

4. the identification of failing gas sensors;

5. the identification of errors in the estimated black carbon estimation;

6. the identification of indoor measurements.

2.1.2 Data validation

A data validation process based on the sensor box measurements was carried out. The number
of validated measurements is much lower than the original amount of measurements. At the same
time, the data quality is increased by the removal of erroneous or uncertain measurements. An
overview of the data validation process is given below.

The identification of errors in the measurement time

The identification of incorrect measurement timestamps (i. e., the time when a measurement is
made) is done during data processing at the server side. The AirProbe applications sends two
timestamps: one from the sensor box (derived from the GPS-signal) and one from the smartphone.
The smartphone’s timestamp is used as replacement in case the timestamp from the sensor box is
missing or invalid (e.g., “1970-01-01”) if it is valid by itself. Otherwise, a default timestamp is used
to indicate the absence of a useful timestamp.

The identification of sensor measurements during heating-up

After switching on the sensor box, the gas sensors are heated to their working temperature (typ-
ically 200 - 250 ◦C). During this period, which can be as long as 1 to 1.5 hours, the temperature

2014 c© Copyright lies with the respective authors and their institutions
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within the sensor box increases as well (see Fig.). Therefore the sensor box temperature is used
as a proxy to screen measurement series for heating-up periods. The variability of the measured
temperature within the box is used for the detection of heating-up events. Due to potential high-
frequency noise on the temperature signal, a 5 minute average temperature series is calculated
(T5 = {T5,t1, . . . , T5,tn}, where T5 is a temperature data series of 5 minute averaged tempera-
ture measurements, and T5,ti the 5 minute average temperature of the ith 5 minute long period of
temperature measurements). The difference between the elements of this temperature series is
then calculated (T5,t2 − T5,t1) and positive differences are substituted by "+1", and negative differ-
ences by "-1". The running length of this series is determined, and searched for long (longer than
30 minutes, i. e., 6 elements) periods of positive temperature differences at the beginning of the
series. These are periods of steady temperature increase such as observed during the heating-up
period. The measurements that are made within the heating-up period are flagged.

Potential errors of this identification procedure could occur when the environmental temperature
is close to the temperature within the sensor box before and after heating-up of the sensors. In
this situation there would not be an increasing temperature in the sensor box, and the heating-
up event would not be detected by this methodology. Additionally, some sensors would need
less time for heating-up than others. Using the temperature does not allow for identification on
the individual gas sensor level. The fact that the black carbon concentration is modelled from
the measurements of all the gas sensor (allbeit with different importance) justifies the use of this
integrated methodology based on sensor box temperature. The number of measurements that
were identified as measurements during sensor box heating-up are given in Table 2.1 and acoount
for 19–27% of the total data volume per city.

The identification of out-of-range gas sensors

Sensor values are checked to be within the sensor output range. Records with sensor values lower
than 0.05 or higher than 4.95 are flagged as out-of-range records per sensor (maximal read-out
range of [0, 5]). The first days of the calibration period prior to the actual test cases were dedicated
to check the sensor values for out-of-range events. At that time, the measurement range could be
manually adapted to fall within the measurement interval for the individual sensors. Especially the
NOx and NO2 sensors went out-of-range for some sensor boxes, most other sensors did not show
this behaviour. The calibration models are constructed on valid sensor box measurements, i. e., all
the sensors are within the measurement range, except for e2v MiCS-2710 NO2 sensors which still
frequently went out-of-range. The error on the black carbon estimation by these models is higher
when one or several sensors are out-of-range. Of course, sensor importance in the calibration
model is an additional important parameter in this sense. Sensors that do not substantially con-
tribute in the model estimation may fall out of range without significant effects. Currently, we did not
take sensor importance into account, and used generic threshold values for each sensor of each
sensor box. The number of measurements that went out-of-range during the APIC cases are given
in Table 2.1. Most of the sensors are out-of-range in at rare occasions (between 0.05 and 6%), but
for the e2v MiCS-2710 NO2 sensor the number of out-of-range events is much larger (35–88%).
The drift of the e2v MiCS-2710 NO2 sensor may explain its low importance in the calibration model
(see D1.2).

Identification of failing sensors

Failing sensors often give stable sensor signals when other sensors are fluctuating. The identifica-
tion of failing sensors is based on the standard deviation of the sensor signals. When the standard
deviation of the sensor signals is below a pre-defined threshold, the according records are flagged.
The analysis is performed using the standard deviation over a 5 minute data window. The standard
deviation threshold is determined as the standard deviation of a data series (300 elements) with
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mean 1 and random noise of maximum 0.05 around the mean (=0.003, rounded to threshold value
of 0.005). The duration in which the signal has a low variability provides extra information, and
flags are coded as: "1" for failure during less than 5 minutes, "2" for periods between 5 and 30
minutes, and "3" for period longer than 30 minutes. A final field is calculated in which the number
of failing gas sensors (out of 8) is given per data record.

This methodology of failing sensor detection contains errors. The threshold that is used is set
rather subjectively. Increasing or decreasing the threshold could affect the number of records
that are identified as from failing sensors. Sensor measurements under stable gas concentrations
could be erroneuosly identified as sensor failure. In an urban outdoor environment, the variability
is high enough to exceed the threshold, but indoor measurements could possibly lead to a false
identification. There is also an overlap with the out-of-range identification. Sensors that go out-of-
range will result in a very low standard deviation and will therefore be identified as failing sensors.
Numbers of measurements with very low variability are given in Table 2.1.

Identification of errors in geo-location

Several geographical data sources are exploited by the EveryAware platform: location data from
the sensor box, location data from the smartphone, location data from WLAN or IP address. In
general, the accuracy of the geolocation data is higher when they are taken from sensor box or
mobile phone GPS, and lower when the IP address or WLAN data. The difference in accuracy is
used in the flagging of the geo location data ("1" for GPS from sensor box or smartphone, "2" for
IP or WLAN data, and "3" when location data are lacking).

For data series with location data from WLAN, IP or without location data, an interpolation is per-
formed when these records are preceeded or followed by accurate geo-location data. This could
for example occur when the GPS signal is lost for some time. If this period is shorter than 1 minute,
a linear interpolation is performed to estimate the geo-location of these records better. The inter-
polated records are flagged. A similar approach is used for records that make unrealistic jumps.
Therefore the data is UTM-projected and the distance between sequential records is calculated. If
this distance is unrealisticaly high (we used a threshold of 11 m, which is equivalent to the distance
travelled per second at a travelling speed of 40 km/h), the geo-location is estimated by interpola-
tion. This approach is justified by the fact that these jumps only last for a few seconds, the distance
over which the interpolation is performed stays limited. The spatio-temporal measurement series
over which interpolation of the geographical data is allowed is kept short (max. 1 minute). For
longer period, the uncertainty on the estimations becomes too high, especially when linear inter-
polation of the GPS coordinates is applied whithout taking the street configuration into account.
The amount of data with a GPS source other than the sensor box or smatphone GPS ranges
between 12% for Antwerp, about 20% for Kassel and Turin, and 40% for Antwerp.

Identification of indoor measurements

Indoor measurements generally show limited variability in temperature and relative humidity sig-
nals. The running standard deviations over a window of one minute for temperature and relative
humidity were used to identify indoor measurements. If the standard deviation of data subsets of
5 minutes stays below a threshold, these measurements are identyfied as indoor measurements.
Additionally, records with a relative humidity below 20%, during heating-up without GPS, with a
lot (6 or more) stable sensor signals or with a geo-location data source other than the GPS from
sensor box or smartphone are also flagged as potential indoor records. The identification of indoor
measurements contains a high degree of uncertainty. The variability threshold for the temperature
and relative humidity sensors was set subjectively (as the standard deviation of a 1 minute long
data series that was constructed by random sampling of values between 19.995 and 20.05 (steps
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of 0.001) with replacement). As indicated in D1.2 teh sensor box could potentially be used to es-
timate indoor conditions. In this analysis, however, the focus is on the outdoor environment and
indoor measurements are eliminated as much as possible.

Table 2.1: Number of measurements affected by the different data validation steps.
Antwerp Kassel Turin London

Original nr* 283.000 3.200.000 2.018.000 1.314.000
Heating-up 55.000 866.000 383.000 276.000
Out-of-range:
→e2v MiCS-2710 NO2 250.000 1.950.000 1.500.000 465.000
→ other sensors 19.000 160.000 72.000 16.000
Failing sensors :
→CO alpha 20.000 196.000 86.000 46.000
→O3 53.000 385.000 116.000 32.000
→VOC 25.000 429.000 92.000 28.000
Indirect GPS 34.000 614.000 423.000 538.000
Indoor measurements 94.000 1.040.000 333.000 146.000
* Number of measurements (approximation) based on time and location.

Data validation process

The data validation was performed iteratively over the different sessions, where a session is defined
as a collection of measurements that are conducted by a unique session of the App (either a new
session or a recovered old session). The data within one session are not necessarily sequential in
the sense that different data collections from different days could be clustered within one session.
The sessions are sensor box specific, so there is no mixing of data from different sensor boxes
within one session.

High proportions of data have been identified as heating-up measurements, out-of-range measure-
ments (especially for e2v MiCS-2710 NO2 sensor) or measurements with unprecise positioning
(GPS source other that sensorbox or smartphone GPS). For the analyses presented in the follow-
ing sections, the data validation was used to reduce the original datasets of each city, applying
these rules:

1. measurements are not taken in the heating-up period of the sensors;

2. the sensor values are within the measurement range;

3. the CO alphasense, O3 and VOC sensor show a variability higher that the sensor noise level;

4. the measurements are made outdoors;

5. the GPS data are from the sensorbox or smartphone GPS.

Finally, data record where the black carbon estimation was outside the reasonable range of 0 to
150 µg/m3 for an urban environment were excluded from further analyses.

The number of validated outdoor data per city is a large reduction of the original number of mea-
surements. The validated data sets contain 31%, 38%, 53% and 45% of the original data for
Antwerp, Kassel, Turin and London, respectively. The histograms of the estimated black carbon
concentrations for the original datasets versus the validated datasets are given in Fig. 2.3. The
main difference is a shift toward higher black carbon concentrations for the validated data. The
bimodal pattern that is observed in Antwerp, is not seen at other cities. For Kassel, the distribution
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of black carbon concentrations is quite uniform compared to other cities, whereas for Turin and
London oposing patterns are observed. In Turin most of the measurements are below 10 µg/m3,
in London most values are greater than 15 µg/m3. Averaged black carbon concentrations are
10.8, 12.7, 8.8 and 16.1 µg/m3 for Anwterp, Kassel, Turin and London, respectively. There is a
significant difference in the measured black carbon concentration at the four cities (Wilcoxon test,
P < 0.01).

2.2 Data interpretation and visualization

2.2.1 Temporal analysis of the measurements

The temporal analysis of the measurements is conducted similarly for the four cities. Following
analyses are performed: (i) a day-by-day analysis of the black carbon concentration, and (ii) an
assessment of the black carbon concentration at different hours of the day. Given the nature of the
data –which are spatially and temporally explicit– it is difficult to neglect the spatial component and
focus on the temporal component exclusively. A (substantial) part of the variability in the temporal
analysis is caused by spatial effects (e. g., measurements at busy and low traffic streets). In the
temporal analysis we assume that citizens made measurements at a comparable mixture of streets
and other locations, so that the variability in the measurements caused by spatial effects is similar
from day to day and for the different hours of the day.

A large day-to-day variation in black carbon concentration is observed at all four cities (Fig. 2.4).
For London, black carbon concentrations are generally high, and here the day-to-day variation is
smaller, but still significant between certain days. The range of the boxes (interquartile ranges)
also differ substantially between days. For some days, the interquertile range is only 1–2 µg/m3,
for other days this range can be 10 µg/m3 or more.

For the assessment of the variability in black carbon concentration at different hours of the day,
the estimated black carbon concentrations were first normalized for the variability between days
by dividing black carbon values by the daily averaged values. The typical bimodal pattern with
elevated concentrations during morning and evening rush hours is slightly visible in Kassel and
Turin (Fig 2.5). For Antwerp the black carbon estimations between 8 and 9 am are significantly
lower than for later hours. The highest values are observed at 13 and 18-19 pm. In London, the
lowest values are observed between 8-9 am, i. e., during the timeslot when the highest values are
expected based on traffic intensity.

2.2.2 Spatial analysis of the measurements

The spatial analysis of the sensor box measurements form the Airprobe International Challenge
is performed at different levels of detail. First, an analysis is made at the street level, where the
estimated black carbon levels are compared between different streets in the study area at the four
cities. The calculation steps involved in the attribution of a measurement point to a street are: (i)
a projection of the measurements to the closest street in an area of approximately 100 m around
the measurement point. The street data layer is an open street map layer from the four cities, and
(ii) the street names are added as an extra column to the validated data sets. Some data points
could not be attributed to a street because they were to far from the closest street. These records
were withheld from the spatial analysis. Consequently datasets were further reduced in size, the
datasets contained approximately 50.000, 400.000, 305.000 and 320.000 elements for Antwerp,
Kassel, Turin and London, respectively. The streetwise analysis includes the 25 streets or squares
where the number of measurements were the highest.

Differences in the average black carbon concentration between streets were observed at the four
cities. In Anwterp, the highest concentrations were observed in a residential area with moderate
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all data validated data

(a) Antwerp

(b) Kassel

(c) Turin

(d) London

Figure 2.3: Histograms of estimated black carbon concentrations, based on all the measurement
and the validated measurements per city.
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Figure 2.4: Day-to-day boxplots of the black carbon concentration at the four different cities during
the Airprobe International Challenge.
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Figure 2.5: Black carbon concentration in function of the hour of the day at the four different cities
during the Airprobe International Challenge.
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traffic (Ramstraat, Grote Beerstraat, etc.). The estimated black carbon concentration in this area is
considerably higher than at the main roads crossing the area (Plantin en Moretuslei and Turnhout-
sebaan) (Fig. 2.6). In contrast, the number of extreme peak concentrations is highest at roads with
the highest traffic intensity (Plantin en Moretuslei and Turnhoutsebaan) in the area. The highest
peak events are observed in Dolfijnstraat and Tweelingenstraat, both are residential streets with
moderate traffic.

In Kassel the range of street averaged black carbon concentration is lower than in Antwerp. The
highest concentrations were observed in the “Akazienweg” and the “Kurt-Schumacher-Straße”.
The lowest concentration is found at “An der Ahna”. Exposure to peak events of >20µg/m3 is most
frequently observed at “Georg-Forster-Straße”, “Wilhelmshöher Allee”, and “Kurt-Schumacher-
Straße”. There was also construction work during the challenge in the “Fünffensterstraße” that
caused high concentration values.

In Turin, the average black carbon concentration was the highest in Viale Primo Maggio, where the
number of peak concentrations was also very high. This may be due its position at the intersection
of two main arteries of the city, corso San Maurizio and Regina Margherita, which were, however,
outside the mapping area. Via Accademia Albertina, a street reserved for bus transit, showed
highest number of peaks. Piazza Carlo Felice, on the other hand, is a large square with a green
area and no traffic, showing lowest number of peaks and a low average BC concentration.

In London, the black carbon estimates were generally low. Indeed, the variation in black carbon
concentration of 25 streets with the highest measurement density was very limited. Most peak
events are encountered at the Barbican Highwalks, which are walkways at levels relatively high
above the road. Looking at the average map, however, in the London case, there was only one
area of high BC value detected (around 8.5-10 on the scale) - close to a small section of Farrindgon
Road, which is a main road passing through the edge of the area. GPS errors in the data mean
that the high value cannot definitively be attributed to this road. Two additional areas of medium
value (between 2 and 5.5 on the scale can be seen around Commercial Street and Whitechapel
Road, again major roads passing through the area. Interestingly, average readings of about 4
can be found in the Thomas Moore Residential Gardens, which is perhaps an area where lower
readings would be expected.

A data aggregation to fixed point within streets (at distances of 20 m) was performed using a Gaus-
sian smoothing function. All the measurements within 30 m from the predefined fixed points were
weighted and averaged to a single value that is attributed to the fixed point. Locations with less
than 5 measurements were withheld from this analysis. The maps with estimated black carbon
concentrations for each of the four cities is given in Fig. 2.10. In Antwerp, the highest concentra-
tions were observed in a residential neighbourhood (zone A in Fig. 2.10) in between the two main
entrance roads to the area (B in Fig. 2.10). Given the higher traffic intensity at the main entrance
roads this result was unexpected. At a low traffic area with a traffic free square and calm surround-
ing streets (C in Fig. 2.10) at the South side of the main entrance road Plantin en Moretuslei (lower
B), estimated black carbon concentrations are low. Some busy crossroads and street canyons (D
in Fig. 2.10) had about the lowest black carbon concentration in the area.

For Turin, the limited traffic zone is clearly visible on the map in Figure 2.11 (zone A), where lower
BC values are obtained. Two pedestrian streets, however, show high pollution levels (marked B
in the figure). This could be due to frequent car queues at the intersections of these streets with
those perpendicular, where pedestrian traffic significantly slows down the cars. The area around
the train station, usually busy with busses and other traffic also display high BC values (area C).
Standing out are also Corso Regina Margherita (D) and corso Re Umberto (E) with high pollution
levels and the streets in the vicinity of parks (area F) for low pollution levels.

For Kassel, the pedestrian streets around “Obere Königsstraße” with lower BC values are clearly
visible in Figure 2.10 (b) (zone A). The street “Auedamm” around the city park “Karlsaue” has also
quite good pollution values (zone B). Areas with high traffic volume [“Wilhelmshöher Allee” (C),
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(a)

(b)

Figure 2.6: Average black carbon concentration per street in Antwerp (a) and the number of peak
events (black carbon concentration >20µg/m3) at these streets (b).
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(a)

(b)

Figure 2.7: Average black carbon concentration per street in Kassel (a) and the number of peak
events (black carbon concentration >20µg/m3) at these streets (b).
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(a)

(b)

Figure 2.8: Average black carbon concentration per street in Turin (a) and the number of peak
events (black carbon concentration >20µg/m3) at these streets (b).
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(a)

(b)

Figure 2.9: Average black carbon concentration per street in London (a) and the number of peak
events (black carbon concentration >20µg/m3) at these streets (b).
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“Frankfurter Straße” (D), “Weserstraße” (E), “Schützenstraße” (F)] are also well covered.

For London, examining the lower end of the scale, again unexpected values are found - in par-
ticular, average readings of between 0 and 2.5 along a major route through the area (Aldersgate
Street, which is the A1 road going north from London, towards the North East of England). Similar
low readings can be found along two other major routes - the A1211 and the A501 (Moorgate) (in
the UK context, an A-road is a major route having speed limits of between 100 and 112 kmph).
(See Section 4.6, Deliverable D6.3 for the participants’ views on the readings obtained).

2.2.3 Visualization tools from the web-platform

Air quality data are freely accessible from the website http://airprobe.eu/. Different web
pages (Explore, Understand, Collect and Compare) are designed to assist and guide citizens from
the data collection to the data interpretation (see D2.2). Different visualization tools have been
implemented for optimal use. Citizens can track their own measurments and measurment activi-
ties, analyse personal exposure data from time series or spatial representations of measurements
from a Google Earth plugin. Furthermore, collective data, i. e., all the data that are recorded by the
EveryAware Air Quality sensing platform are vizualised on a open street world map (OSM). The air
paraameter shown on this map is black carbon, and a link to additional information on black carbon
is provided. From the air quality data, a black carbon head map is constructed which is used as
additional map layer. Finaly, a point layer with statistics about number of measurements (counts),
range of dates when measurements where made (from, until), mean estimated black carbon con-
centration and the number of estimated black carbon values is given. Point statistics differ at dif-
ferent zooming levels by changes in the aggregation of measurements. The colours of the points
is according to the mean estimated black carbon concentration. A screenshot of the map is given
in Fig. 2.12. Air quality data are freely accessible from the website http://airprobe.eu/.
Different web pages (Explore, Understand, Collect and Compare) are designed to assist and guide
citizens from the data collection to the data interpretation (see D2.2). Different visualization tools
have been implemented for optimal use. Citizens can track their own measurments and mea-
surment activities, analyse personal exposure data from time series or spatial representations of
measurements from a Google Earth plugin. Furthermore, collective data, i. e., all the data that are
recorded by the EveryAware Air Quality sensing platform are vizualised on a open street world map
(OSM). The air parameter shown on this map is black carbon, and a link to additional information on
black carbon is provided. From the air quality data, a black carbon head map is constructed which
is used as additional map layer. Finaly, a point layer with statistics about number of measurements
(counts), range of dates when measurements where made (from, until), mean estimated black car-
bon concentration and the number of estimated black carbon values is given. Point statistics differ
at different zooming levels by changes in the aggregation of measurements. The colours of the
points is according to the mean estimated black carbon concentration. A screenshot of the map is
given in Fig. 2.12. Further technical details about the visualization platform can be found in D2.2.

2.3 Conclusions from the air quality case studies

Case studies were deployed in Antwerp, Kassel, Turin and London. Participants were equipped
with sensor boxes to collect air quality data in a confined area of about 2-4 km2 within these
cities. From our experience with mobile air quality monitoring including experiments and analyses
performed under Task 4.1 in the First Reporting Period of the project we learned that repeated
measurements at the same location are needed to increase the representativity of the air quality
mapping. Therefore we defined study areas of a feasible size to monitor in a two weeks period by
10-12 sensor boxes.

Air quality data were cleaned and validated by implementing data validation procedures. Data val-
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(a)

(b)

Figure 2.10: Maps of the smoothed black carbon concentration in Antwerp (a) and Kassel (b).
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(c)

(d)

Figure 2.11: Maps of the smoothed black carbon concentration in Turin (c) and London (d).
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Figure 2.12: Visualization of air quality measurements on the project webpage (zoom of Kassel,
Germany, and surroundings).

idation was needed because of sensor box hardware issues (sensor heating, GPS failure, sensor
failing) and issues related to mobile monitoring (e. g., mixing of indoor and outdoor measurements,
inappropriate handling of the sensor box). The data validation resulted in a large reduction of mea-
surement data in all the four cities during the test cases. However, the validation procedures could
not be properly evaluated and it was decided not to implement them in the EveryAware system.
Further developments should direct towards methods to decrease hardware issues and toward an
automated data validation protocol.

The spatio-temporal analysis of sensor data showed that the EveryAware platform is suitable to col-
lect, transfer, store and visualize air quality measurements. High resolution maps of BC concentra-
tions were obtained from a two weeks long monitoring campaign and allowed to recognize spatial
air quality patterns at street level. Nevertheless, the map with modelled black carbon shows much
less variability than the map with observed black carbon concentrations, probably due to slower
sensor response times and also absolute BC concentrations differed substantially compared to
reference maps.
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Chapter 3

Analysis of noise sensor data

Although the main focus of the second phase of the EveryAware project has been on Air Quality,
the work commenced in Phase 1 on general noise capture via the WideNoise App has continued
throughout Phase 2, with a particular focus on the continuing Large Scale Case Study at Heathrow
Airport. While Deliverable D6.3 [EveryAware, 2014c] provides detail on the noise measurements
with respect to the continuation of the Large Scale Case Study around London’s Heathrow air-
port (comparing results obtained to the overall dataset), this section summarizes the noise data
captured through the 3-year EveryAware project as a whole, whether through a specific project
or otherwise for further analysis, the reader is referred to [Becker et al., 2013] where an in-depth
interim analysis of the noise data is provided).

3.1 Quantitative Noise Results

Figure 3.1 shows the map of the distribution of the decibel measurements taken by WideNoise-
enabled phones throughout the project, as clustered points. Figure 3.2 shows this data as a
gridded structure. A total of 48406 points have been added to the database overall, with 21520 of
these since the interim report.

Table 3.1 provides more detail about the dataset:

Figure 3.3 shows the number of measurements per device over the entire period of the EveryAware
project. As can be seen, a significant proportion of the total devices used (14310 of 15293) took
fewer than 5 measurements, confirming the trend observed in D4.1 [EveryAware, 2014b]

Figure 3.1: WideNoise Data Captured - World Overview (clustered points).
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Figure 3.2: WideNoise Data Captured - World Overview (grids).

Data
Location worldwide

Measurements
Number of measurements 48406 (24886)
Number of measurements with geo-coordinates 38228 (17011)
Number of Measurements with geo-coordinates from ip 10178 (7627)
Number of measurements with perceptions 16104 (8015)
Coverage
Overall duration of measurements 78.74h(41.5h)
Decibel Statistics
Average 63.93(63.94)
Standard deviation 19.28( 19.27)
Minimum 0 (0)
Maximum 119.89 (119.89)

Table 3.1: Worldwide WideNoise Summary (figures in brackets refer to the values at Month 18).

Figure 3.3: Number of Devices Versus Number of Points
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Figure 3.4: User Perception - Natural versus Manmade Sounds.

3.2 Relating Qualitative and Quantitative Data

As noted in the interim report [EveryAware, 2014b], unlike with Air Quality data it is not possible to
directly compare the noise data measured using the WideNoise tool with existing noise models, as
the latter are not based on direct measurement but rather are created through the consideration
of measured traffic flows and other contributing environmental factors. There are thus no specific
interpolation methods appropriate for noise data measured as points in space and time. However,
the WideNoise App does permit the comparison of subjective and objective data, and facilitates a
greater understanding of how perceived noise differs or is similar to measured noise.

Figures 3.4, 3.7, 3.5 and 3.6 show the choices made by users for their perceptions relating to
whether they love or hate the sound, were alone or in a social situation when the reading was
taken, whether the environment was calm or hectic and whether it was natural or man made. As
noted in Deliverable D3.1 [EveryAware, 2014a] the sliders used to capture these values permit
users to move from left to right on the screen, making extreme values on the scale (0 or 1) perhaps
more easy to select. The information presented here should therefore be reviewed in this light.

A total of 13870 people submitted a value for the Nature/Man-Made option (note that this figure
exclues those who left the slider at its default value as it is not possible to distinguish between
those users who didn’t submit a value and those who deliberately opted to set the value as half
way between the two). As can be expected, in Figure 3.4 the majority of users selected ’man made’
when evaluating the sound. This is most likely due to the fact that many of the noise measurements
(and in particular the targeted Campaigns) took place in urban areas.

A total of 11512 people submitted a value for the Calm/Hectic option (as above this figure excludes
those who left the slider at its default value). Although the extreme range is less dominant, in
Figure 3.5 the majority of users selected ’hectic’ when evaluating the sound. As suggested in
Deliverable D3.1 [EveryAware, 2014a] this may be due to the fact that users make measurements
when noise has become annoying - e.g. when a plane is overhead or perhaps when they are in a
hectic environment.

A total of 11370 people submitted a value for the Alone/Social option (as above this figure excludes
those who left the slider at its default value). In this case, however, there is a far less significant
different between the extreme ends of the scale.

A total of 11500 people submitted a value for the Love/Hate option (as above this figure excludes
those who left the slider at its default value). Although the extreme range is again less dominant,
in Figure 3.7 the majority of users selected ’hate’ when evaluating the sound. As suggested in
Deliverable D3.1 [EveryAware, 2014a] this may be due to the fact that users make measurements
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Figure 3.5: User Perception - Calm versus Hectic Environment.

Figure 3.6: User Perception - Are You Alone or in a Group.

Figure 3.7: User Perception - Love versus Hate the noise.
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Figure 3.8: Estimated versus Measured Noise.

when noise has become annoying - e.g. when a plane is overhead or perhaps when they are in a
hectic environment.

Figures 3.8 examines the difference between the perceived (as guessed by the user) and mea-
sured noise values (with measurements where the user did not submit an estimate or submitted an
estimate of 0 eliminated). Although an approximately linear trend can be observed, R2 is 0.1023,
indicating a relatively poor match.

3.3 From Measurement to Policy

The results obtained through the use of the WideNoise App in the EveryAware project highlight
once again the relevance of a coordinated campaign of noise measurement to ensure at least
minimum coverage across a specific location. Given the varying accuracy issues relating to the
data, the importance of coupling subjective information (perception) with the measured data cannot
be understated, as it is the former that permits a judgment to be made as to how the measured
data is perceived, turning the number from sound to noise, and understanding the perception of
noise by communities is in turn vital to policy and decision makers. A trade-off is therefore required
going forward between automated data capture and continual measurement of noise (such as that
carried out by the AirProbe App) and offering the opportunity to participants to capture noise that
is relevant to them and tag this as such. While automation may be convenient, it is the manual
effort made to capture and tag noise that highlights its importance.

It should also be noted that even if more accurate devices were made available, and higher levels
of space/time coverage could be obtained, the question remains open as to the required number of
points, their distribution across space and time and subsequent interpretation and/or interpolation
methods to make the result comparable to the official maps, given their radically different sources.
This is a key open challenge for any Citizen Science noise monitoring project.

ÆEvery

Aw
ar

e



D4.2: Report on analysis of sensor and subjective data, and comparison of measured vs perceived environment Page 33 of 56

Chapter 4

Analysis of Subjective Data

This chapter provides an overview of the subjective data analysis that have been performed on the
data that were collected with WideNoise Plus for noise data. What about the few tags collected
in connection with AirProbe? Please LUH comment on this. The application WideNoise Plus
allows users to record sound samples and to annotate them with perceptions and tags. The app
documents and maps the soundscape all over the world. The procedure of recording includs the
assignment of tags. We analyze the difference resources provided by WideNoise Plus and use the
underlying opinionated information to build a recommendation framework. Therefore, we evaluate
multiple tag recommendation methods to improve the sensor data collection.

4.1 Constraints

There are some special conditions for mobile sensing that must be addressed when choosing
recommender algorithms. WideNoise Plus is most often used outdoors without regard to Internet
connectivity. Thus, the application must be able to produce recommendations only from data
that has been stored on the device and the elements of the current record (the measured noise,
the location, and the user’s perceptions). Furthermore, producing recommendations should only
consume as little power and runtime as possible. Otherwise, the increased battery drain and long
waiting time would discourage users from taking further measurement.

We compare several approaches against each other in our experiments. We describe them in
the remainder of this section and discuss their advantages and drawbacks regarding resource
consumption as well as their suitability for the mobile environments.

4.2 Methods

Most Popular Tags (MPT)

A very simple recommendation method is to always suggest those tags that have been assigned
the most often so far. This yields a non-personalized recommender that will serve as a lower
baseline in our comparison of algorithms.

The only input data that would have to be provided for the app are just those top most popular
tags. Since also nothing has to be computed, the application would require only very little storage
and almost no processing time at all. Therefore, this method would be the best-case in terms of
resource requirements.

However, it is expected to be rather bad with regard to the quality of the recommendations, since
it is just a static list of the same tags for each record. Table 4.1 shows the list of the current most
popular tags. While there are some country specific tags like the Italian word “esterno” (outdoor
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scene), there are some international ones like “garden” or “car” that are likely to occur all over
the world. Therefore, this recommendation strategy is considered an adequate baseline for our
evaluations.

Table 4.1: The 10 most popular tags in the dataset
Amount Tag

573 garden
557 esterno
549 heathrow
525 aeroplane noise
271 voci
187 car
181 antwerpen
157 plane
151 street
133 arriva

Most Popular Tags by User (MPTU)

Another very simple recommendation method is to suggest those tags that have been used by the
given user the most often so far. This yields a personalized recommender that recommends tags
that are known to the user and in a language they understand.

It is also very suitable for the mobile devices, as only the user profile and no other training data
has to be stored. Using the pre-ordered list of the user’s tags, the algorithm is similarly fast as the
global most popular tag recommender. However, this algorithm has a severe cold start problem as
it cannot produce tags for new users.

Proximity-Based Approach (Prox)

An approach that uses the location information provided by the location sensor is to recommend
tags that have been used so far at the given location or nearby. Prox is thus a context-aware
recommender that will recommend tags that likely describe the location like for example “airoplane
noise”, which has been used near airports. Therefore, a proximity-based prediction is likely to have
good performance.

The algorithm has stronger requirements than the previous ones. Either the whole dataset (all
recordings in any location) must be stored on the device or an Internet connection is required
beforehand in order to query for records that have been taken roughly near the user’s current
location.

In our experiments we will use the k-Nearest-Neighbors algorithm [Ricci et al., 2011, page 129–
131] to find the nearby tags. This ensures that this approach always recommends tags even if they
are taken from faraway places. For our experiments we manually choose a value of 42 for k, since
this showed good results in a subset in the training data.

The distance between two locations can be calculated with a number of methods like the Man-
hattan, the Euclidean, or the great circle distance. The Manhattan distance is rather inaccurate
although very easy to compute. The Euclidean distance is much better in terms of accuracy, but
with the price of a higher computational effort. However, compared to the actual air-line distance,
the accuracy is getting worse for locations further away from the equator. Finally, the great cir-
cle distance is very precise, but is the most expensive with regard to computations. We use the
Euclidean distance (Prox-ED) and the great circle distance (Prox-GCD) due to its higher accuracy.
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Perception-Based Approach (Perc)

An approach that uses WideNoise Plus’s perception values is able to recommend tags that are
associated with the same mood (e.g., “love”). This yields a context-aware recommender that will
recommend tags that describe the user’s perception of the noise, location, etc. (e.g., “noisy plane
spoiling peace”). There are four scales with a range from -5 to +5 each with steps of size 1 to
express the corresponding perception:

• Feeling: Ranges from “hate” to “love” and expresses whether the user enjoys the recorded
noise or whether it was unpleasant.

• Disturbance: Ranges from “hectic” to “calm” and expresses how disturbing the recorded
noise was perceived by the user.

• Isolation: Ranges from “alone” to “social” and expresses how much company the user had.

• Artificiality: Ranges from “man-made” to “nature” and expresses whether the recorded noise
was caused by humans, machines, or nature.

The method is suitable for mobile devices, as only an aggregated list of tags for each possible
perception combination has to be stored. Using the pre-ordered lists of the perception’s tags, the
algorithm has to combine those lists that are the most similar to the given perception setting. A
perception vector p′ is considered similar to the current perception vector p if no perceptions differ
more than a given threshold d, i.e., if ||p− p′||∞ ≤ d.

In our experiments we will set the (initial) threshold to d = 1 and increase it by one in cases where
no such measurement p′ exists and thus nothing could be recommended.

Clustering-Based Most Popular (Clus)

This approach, presented by [Abbasi et al., 2009] uses the location information of the location sen-
sor to cluster the records and assign the most frequent tags ordered by decreasing user frequency
of a cluster’s records to that cluster during a preprocessing step. Recommended are those tags
that have been used in the cluster of a given location so far. This yields a context-aware recom-
mender that will likely recommend tags that describe the location. This algorithm is similar to Prox,
but, since the records are clustered, the computational effort and the amount of input data is lower.

It is thus suitable for mobile devices, as only the precomputed ranked list of tags of each cluster
have to be stored. For each new record, the distance to all clusters has to be computed to select
the ranked tag list of the cluster closest to the user.

In an offline preprocessing, the resources are clustered using k-Means and the most frequent tags
for each cluster are determined. k-Means requires the number of cluster k as an input parameter
as well as a distance computation function. For k we use the rule of thumb proposed by [Mardia
et al., 1979, page 365]:

k ≈
(n
2

) 1
2

Hereby, n refers to the number of resources to be clustered and the Euclidean distance is used as
distance function. Clusters are represented by their centroids and in the recommendation phase,
we use the Euclidean distance for distance calculation.

During our experiments we discovered that, in our scenario, it is better to choose the absolute
tag frequency during clustering phase rather than the user frequency. We will present the result
for user frequency (i.e., Clus-UF) and absolute tag frequency (i.e., Clus-AF) separately during our
evaluation.
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Hybridization

To improve performance, multiple recommenders can be combined in hybrid recommenders. Such
a combination can improve the results by combining several aspects, e.g., to yield a location-based
approach that also is influenced by the given perceptions.

The suitability for our scenario depends on the algorithms that are combined. In this paper we
will analyze 3 combinations between most popular tag by user on the one hand and either the
perception (Perc-MPTU), proximity (Prox-ED-MPTU), or clustering (Clus-ED-MPTU) approach on
the other hand. We use most popular tag by user as it produces personalized recommendations
with only little computational effort. In order to keep the computational effort small we chose the
Euclidean distance-based versions of Perc and Prox.

All involved algorithms compute their individual rankings. For a tag we compute a score as an un-
weighted linear combination [Burke, 2002] of the inverse ranks according to the following equation:

score(t) =

(
1

rank1 (t)
+

1

rank2 (t)

)−1
Hereby, rank1 (t) and rank2 (t) are the positions of the tag t in the rankings of the two combined
algorithms.

4.3 Dataset and Experiments

In this section we introduce the dataset of our analysis and how it was assembled as well as the
metrics we use for the evaluation in Section 4.4.

4.3.1 Dataset

The basis for our experiments is the full set of WideNoise Plus records with at least one tag, col-
lected between December 14, 2011 and June 12, 2013. After the removal of records that had been
submitted for testing by the developers, the collection consists of 5,434 reports collected by 546
users that contain 1,151 distinct tags and 9,255 tags in total. The following further preprocessing
steps were applied to the tags: All tags have been lower-cased and some encoding issues have
been resolved manually (e.g., we replaced “wrzburg” with “würzburg”).

Before we describe the experiments on tag recommendations, we observe a few statistical proper-
ties of the datasets. Figure 4.1 shows the distribution of the tag frequency. The distribution tends
to be fat tailed.

Figure 4.2 shows the distribution of the number of tags assigned to one record. The maximum
number of assigned tags is 8 and we therefore pick it as the maximum number of recommended
tags in our experiments. On average, one WideNoise Plus record has 2.45 tags assigned to it.

Figure 4.3 shows the distribution of the number of tag assignments per user. The most active user
assigned 2,461 tags and the average number of tag assignments per user is 33.92. However, we
have a fat tail of users that made just one tagged records and then stopped using this feature.

4.3.2 Evaluation

We evaluate the different recommendation algorithms in an offline experiment. We split the full
dataset into training and test data using a time split after 70 % of the records leaving 3,805 records
for the train phase and 1,629 records for the evaluation phase. In that way, we stay close to the
actual scenario: The WideNoise Plus app runs on a mobile device and must produce recommen-
dations from the data on the device. While it is not possible to send training data record by record
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Figure 4.1: Distribution of the tag frequency on a log-log scale. The elements on the x-axis are the
1,151 unique tags, ordered by decreasing frequency.

to an application, it is very well conceivable, to update the app with training data in larger regular
intervals. A consequence of this procedure is that the test data set contains users and tags that
do not occur in the training data. Again, this is close to the real scenario, where often users take
measurements over only a short time span and thus do not have large user profiles to be used for
training. This closeness to the real-world scenario was the decisive element for a time split and
against other methods like cross validation procedures, where random samples of the full data set
are selected as test data.

The algorithms are trained and then used to produce a ranked list of recommendations for each
record in the test dataset comprising the user, the sensor measurements (longitude, latitude and
noise level) and the four perceptions. To evaluate the performance we measure the predictive
power of recommendations, i.e., for every record of the test data, precision, recall, and F1 measure
are computed. For these three metrics, the number of recommended tags has to be set to some
fix number k. To pay tribute to the size of mobile devices and following the findings above on the
maximum number of assigned tags, we let k run from 1 through 8 and compute the score at each
level. Thus, if A is the set of tags that were actually assigned to the record and P is the set of
the top k recommended tags, then precision and recall are defined as follows [Ricci et al., 2011,
page 109]:

Precision(A,P ) =
|P ∩A|
|P |

Recall(A,P ) =
|P ∩A|
|A|

The F1 measure is the harmonic mean of precision and recall:

F1(A,P ) = 2 · Precision(A,P ) · Recall(A,P )
Precision(A,P ) + Recall(A,P )

Theoretical upper bound In the experiments, we will compare not only different algorithms
against each other, but also to a theoretical “perfect recommender”. This upper bound demon-
strates, how much room for improvements is left for further, possibly more advances methods in
future work. The bound is constructed by recommending those tags for a record that have actually
been used for it as long as these tags occur in the training data. It is clear that no real algorithm
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Figure 4.2: Distribution of tags per record on a log-log scale. The x-axis represents the dedicated
records and the y-axis represents the number of tags assigned to such a record.

Table 4.2: F1 measure for WideNoise Plus

nu
m

be
ro

ft
ag

s

M
P

T

M
P

TU

Pe
rc

P
ro

x-
E

D

P
ro

x-
G

C
D

C
lu

s-
U

F

C
lu

s-
A

F

Pe
rc

-M
P

TU

P
ro

x-
E

D
-M

P
TU

C
lu

s-
A

F-
M

P
TU

up
pe

rb
ou

nd

1 0.002 0.180 0.084 0.213 0.204 0.049 0.165 0.165 0.234 0.186 0.433
2 0.028 0.175 0.113 0.203 0.204 0.054 0.192 0.204 0.227 0.229 0.450
3 0.043 0.162 0.100 0.181 0.182 0.047 0.178 0.193 0.206 0.204 0.384
4 0.036 0.153 0.098 0.170 0.169 0.064 0.164 0.165 0.190 0.188 0.327
5 0.032 0.149 0.091 0.153 0.162 0.057 0.155 0.146 0.168 0.176 0.284
6 0.030 0.135 0.084 0.148 0.146 0.051 0.138 0.139 0.163 0.161 0.251
7 0.027 0.124 0.082 0.136 0.134 0.046 0.128 0.132 0.149 0.149 0.225
8 0.026 0.116 0.076 0.126 0.125 0.042 0.120 0.125 0.139 0.139 0.204

– which of cause has no knowledge about the user’s actually chosen tags – can beat that upper
bound (unless it can produce tags that have never been used before).

4.4 Results

In the evaluation we use the global most popular recommender as baseline. Every more sophisti-
cated recommender should achieve better results than that. Additionally, we include the values for
a perfect pseudo-recommender that predicts just those tags that are actually used and present in
the train dataset.

As described in Section 4.2, there are language specific tags in the list of the global popular
tags (see Table 4.1). Further, besides the larger geographic areas, there are also tags that will
occur only in certain particular areas like the tag “heathrow”, which would be relevant only around
London. It is therefore to be expected, that the most popular baseline will achieve rather low
results.

Figure 4.4(a) shows the results for precision and recall. The F1 measure results are shown in more
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Figure 4.3: Distribution of the number of tag assignments per user. The x-axis represents the
users and the y-axis represents the number of tag assignments of these users.

detail in Figure 4.4(b) and Table 4.2. In the discussion, we focus on the scores that are obtained
for the recommendation of two and three tags respectively, since the average amount of assigned
tags in the dataset is 2.45. Compared to the baselines, we observe, that all algorithms successfully
outperform the most popular tags recommender, but also – comparing to the theoretical upper
bound – that there is plenty of room for improvements.

An interesting results is that the personalized MPTU approach yields a very good score. It is
already better than the computationally intensive Perc approache, but slightly worse than Clus and
Prox.

It is very interesting that in comparison to the use of the Euclidean distance, the great circle yields
almost the same results. For our scenario, this is good news, as similar recommendations are
produced with less computational effort. The use of clustered locations (i.e., Clus) yields similar
results as Prox-ED and Prox-GCD, but is computationally less expansive.

Looking at the hybridization results, we see that all algorithms profit from the merge with MPTU.
Prox-ED benefits far more from MPTU than Clus-AF and achieves the best results among all
investigated algorithms – approximately already half of the maximal possible score.

To evaluate the suitability for mobile devices we measured the runtime it took each recommender
to predict the tags for the whole evaluation dataset. Figure 4.5 depicts the computation time for
every algorithms1.

The computational effort of the great circle distance is not acceptable considering the almost same
performance. While Prox-ED-MPTU achieved the best recommendation quality, it requires a lot of
computation time. Still one has to consider that the analysis was conducted on a relatively powerful
computer and that the times will increase with a growing dataset. The runtimes can therefore only
be used as indicators, since smartphones have much less computation power and would therefore
take much longer.

1The evaluation was conducted on a Lenovo ThinkPad X220 with an Intel Core i7-2640M (2.80 GHz), 8 GB RAM,
Windows 8 Professional 64-bit, and Gnu R 2.15.3 64-bit.
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Figure 4.4: Evaluation results for WideNoise Plus.
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Chapter 5

Perceived versus measured
environment

In this chapter we present and discuss the first results of our method of subgroup discovery
aimed at obtaining interesting descriptive patterns in ubiquitous data. In particular, by applying
our method to the data collected by the users of our Widenoise application, i.e. average sound
level measurements, subjective perceptions and tags, we carry out a factor analysis to detect
which environmental parameters have the strongest impact on user’s environmental perception.
In doing that, we provide a novel graph-based analysis approach for assessing the relations be-
tween the obtained subgroup set, and for comparing subgroups according to their relations to other
subgroups.

In the last section we present the general statistics of the AirProbe web game, where players had to
guess the air pollution level of their city by relying on their perception of the environment. Moreover,
we perform a detailed analysis of player behavior and their game strategy change in response to
the actual air pollution (black carbon levels) measurements taken with our sensor box.

5.1 Overview

For subgroup analytics, we first obtain a set of the top-k subgroups for a specific target variable.
Typically, an efficient subgroup discovery algorithm needs to be applied. In our experiments, we
apply the SD-Map* [Atzmueller and Lemmerich, 2009] algorithm for efficient subgroup discovery,
which is suitable for sparse tagging data [Atzmueller and Lemmerich, 2013]. After that, the set of
subgroups needs to be assessed and put into relation to each other.

The proposed approach especially focuses on this specific step: It considers a relation between
subgroups such that their “connections” according to this relation can be modeled as a graph.
More formally, given a certain criterion implemented by a relation function rel : I × I → R we
obtain a value estimating the relationship between pairs of subgroups, identified by their respective
subgroup descriptions. Possible relations include, for example, geographic distance, or semantic
criteria. In our application setting, we focus on the latter, since we will use the given perceptions
for noise measurements as semantic proxies for subgroup relatedness.

For assessing our result set of subgroups R, we obtain the rel-value for each pair of subgroups
(u, v). After that, we construct a subgroup assessment graph GR for R: The nodes of GR are
given by the subgroups contained in R. The edges between node pairs (u, v) are constructed
according to the respective rel(u, v) value: If the respective value between the subgroup pair is
zero, then the edge is dropped; otherwise, an edge weighted by rel(u, v) is added to the graph.

It is easy to see that – depending on the applied relationship function rel – this construction process
can result in a fully connected graph which is hard to interpret. Therefore, a refinement of this
process utilizes a certain threshold τrel which is used for pruning edges in the graph. If the relation
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“strength” rel(u, v) between a subgroup pair (u, v) is below the threshold, i. e., rel(u, v) < τrel
then we do not consider the edge between u and v, such that the edge is dropped. By carefully
selecting a suitable threshold τrel the resulting subgroup network can then be easily inspected and
assessed.

Typically, the situation becomes interesting when the graph is split into different components cor-
responding to certain clusters of subgroups. We will discuss examples of constructed networks
below. For selecting a suitable threshold, a threshold-component visualization can be applied, see
Figure 5.5 for an example. This visualization plots the number of connected components of the
graph depending on the applied threshold. Then, the “steps” within the plot can indicate interest-
ing thresholds that can be interactively inspected. A related visualization plots the used threshold
against the graph density for obtaining a first impression of the ranges of suitable threshold selec-
tions.

5.2 Applied Dataset

We utilize data from WideNoise Plus application between December 14, 2011 and June 12, 2013.
WideNoise Plus allows the storage of noise measurements using ubiquitous mobile devices, and
includes sensor data from the microphone given as noise level in dB and data from the location
sensors (i.e., GPS-sensor, GSM- and WLAN-locating) represented as latitude and longitude coor-
dinate as well as a timestamp. Furthermore, WideNoise Plus captures the user’s perceptions about
the recordings, expressed using the four slider feeling (love to hate), disturbance (calm to hectic),
isolation (alone to social), and artificiality (nature to man-made). In addition, tags can be assigned
to the recording. In our analysis, we utilize the following objective and subjective information for
each measurement:

• Objective: Level of noise (dB).

• Subjective perceptions about the environment:

– “Feeling” (hate/love) encoded in the interval [−5; 5], where -5 is most extreme for “hate”
and 5 is most extreme for “love”.

– “Disturbance” (hectic/calm), encoded in the interval [−5; 5], where -5 is most extreme
for “hectic” and 5 is most extreme for “calm”.

– “Isolation” (alone/social), encoded in the interval [−5; 5], where -5 is most extreme for
“alone” and 5 is most extreme for “social”.

– “Artificiality” (man-made/nature), encoded in the interval [−5; 5], where -5 is most ex-
treme for “man-made” and 5 is most extreme for “nature”.

• Tags, e. g., “noisy”, “indoor”, or “calm”, providing the semantic context of the specific mea-
surement.

The applied dataset contains 5,237 data records and 1,056 distinct tags: the available tagging
information was cleaned such that only tags with a length of at least three characters were con-
sidered. Only data records with valid tag assignments were included. Furthermore, we applied
stemming and split multi-word tags into distinct single word tags.

Figures 5.1-5.4 provide basic statistics about the tag count and measured noise distributions, as
well as the value distributions of the perceptions and the number of tags assigned to a measure-
ment. As can be observed in Figure 5.1 and Figure 5.4, the tag assignment data is rather sparse,
especially concerning larger sets of assigned tags. However, it already allows to draw some conclu-
sions on the tagging semantics and perceptions. In this context, the relation between (subjective)
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Figure 5.1: Cumulated tag count distribution
in the dataset. The y-axis provides the prob-
ability of observing a tag count larger than a
certain threshold on the x-axis.
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Figure 5.2: Cumulated distribution of noise
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probability for observing a measurement with a
dB value larger than a certain threshold on the
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Figure 5.4: Distribution of assigned tags
per resource/data record.

perceptions and (objective) noise measurements is of high interest. Therefore, we present first
analysis results of interesting patterns in the case study described below. We focus on the relation
between semantics and perceptions as indicated by the different subjective perception values.

5.3 Case Study: First Results and Discussion

In the following, we present first analysis results in the context of the WideNoise Plus data. Ac-
cording to the proposed approach, we applied subgroup discovery for the target variable noise (dB)
focusing on subgroups with a large deviation comparing the mean of the target in the subgroup
and the target in the whole database. We applied the simple binominal quality function. Table 5.1
shows the resulting 20 patterns combining the two top-10 result sets.

In the table, we can identify several distinctive tags for noisy environments, for example, craft,
aircraft, plane, heathrow AND plane which relate to Heathrow noise monitoring [Atzmueller et al.,
2012] for more details. These results confirm the basic analysis in [Atzmueller et al., 2012]. For
more quiet environments, we can also observe typical patterns, e. g., focusing on the tags indoor,
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Table 5.1: Patterns: 1-10 - target: large mean noise (dB); 11-20 - target: small mean noise (dB);
Overall mean (population): 70.12 dB. The last two columns include the node degree in the sub-
group assessment graph, for τrel = 0.90 and τrel = 0.95.

id description size mean dB feeling disturbance isolation artificiality deg (t=0.9) deg (t=0.95)
1 craft 67 92.10 -3.06 -3.21 3.21 -4.61 4 1

2 air 72 89.72 -3.07 -3.10 2.97 -4.57 4 1

3 arriva 252 78.64 -0.02 -0.01 0.01 0.00 9 8

4 plane 415 76.26 -3.47 -2.61 -0.59 -3.75 5 0

5 heathrow AND plane 31 87.81 -4.61 -4.48 -0.32 -4.65 3 2

6 runway 107 79.62 -3.78 -3.45 -1.45 -3.94 3 2

7 runway AND plane 92 79.92 -3.75 -3.67 -1.38 -3.78 3 2

8 aeroporto 13 94.08 -5.00 0.00 0.00 0.00 6 1

9 ciampino 16 91.13 -4.06 0.00 0.00 0.00 10 2

10 departure 14 92.50 -0.71 0.57 -0.29 -1.36 11 8

11 home 124 45.58 1.10 1.31 -0.96 -0.99 9 7

12 bosco 17 35.35 3.29 3.53 -1.65 1.88 0 0

13 indoor 111 56.69 0.81 0.71 -0.17 -1.29 9 8

14 office 172 59.78 0.10 0.68 -0.35 -1.68 11 9

15 borgo 12 31.33 3.00 3.25 -1.00 1.67 0 0

16 background 35 48.06 0.40 2.11 -2.46 -0.97 10 9

17 work 74 55.76 -0.49 0.19 -0.35 -1.86 11 5

18 indoor AND background 22 44.32 0.55 1.91 -2.14 -0.73 10 8

19 kassel 96 58.67 -0.17 0.64 0.17 -1.41 10 9

20 work AND background 23 47.43 0.61 1.74 -2.00 -0.74 10 8

background and work, and combinations. Some further interesting subgroups are described by the
tags bosco (forest) and borgo (village). These also show a quit distinct perception profile, shown in
the respective columns of Table 5.1. This can also be observed in the last two columns of the table
indicating the degree in the subgroup assessment graph (see below): The subgroups described
by borgo and bosco are quite isolated.
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Figure 5.5: Thresholded connected component plot
based on a minimal rel value.

In order to analyze subgroup relations
with respect to the perceptions, we ap-
ply the Manhattan similarity as our as-
sessment relation rel. We measure the
similarity using the averaged perception
vectors of the respective subgroup pat-
terns, with normalized values in the inter-
val [0; 1]. Using the Manhattan distance,
we consider the overall “closeness” of the
vectors; alternatively, the cosine similar-
ity would focus on similar perception “pro-
files”, i. e., uniformly expressed perceptions.

For determining appropriate thresholds τrel, Figure 5.5 shows a threshold vs. connected com-
ponent plot using the Manhattan similarity defined above. Then, appropriate thresholds can be
selected by the analyst. As can be observed in Figures 5.6-5.7 the respective networks for thresh-
olds 0.90 and 0.95 show a distinct structure. Starting with the lowest threshold τrel = 0.90 we can
already observe the special structure of patterns 12 and 15. At this level, the remaining graph stays
connected. With threshold τrel = 0.95, several clusters emerge – the “Heathrow cluster” (5, 6, 7),
as well as the large cluster covering most of the lower noise patterns. However, this cluster also
contains some patterns from the higher noise patterns (3, 8, 9, 10), which are rather unexpected
and therefore quite interesting for subsequent analysis. The connecting subgroup patterns can
then be simply extracted by tracing the connections in the graph.

ÆEvery

Aw
ar

e



D4.2: Report on analysis of sensor and subjective data, and comparison of measured vs perceived environment Page 45 of 56

12

3

4

5

6

7

8
9

10

11

12

13

14

15

1617

1819
20

Figure 5.6: Assessment graph: τrel = 0.90.
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Figure 5.7: Assessment graph: τrel = 0.95.

5.4 The AirProbe web-game

In this and in the following sections we report general statistics for data gathered through the
AirProbe web game. This web application, implemented on the XTribe platform, allowed to gather
geolocalized subjective opinions from our volunteers during the AirProbe International Challenge.
The dataset we analyze here contains data from October 21st, 2013 to December 23rd, 2013. We
report in Table 5.2 and Table 5.3 some general statistics on user participation.

With more then 80, 000 annotations (i.e., both new and edited airpins) and more than 300 par-
ticipants in the four cities, the case study provides sufficient material to successfully analyze and
study the underlying opinion dynamics. The only exception is the city of Antwerp where a modest
dataset has been gathered, so that in some of the following analyses those data will be put aside.
In the next sections we report a set of basic analyses, focused on the main entities of the web
game.

5.4.1 Players and session

Players overall activity

We report in the left part of Fig. 5.8 the number of daily users during the period covered by our
dataset. The experiment lasted 6 weeks, 2 weeks for each phase, with additional few more days of
data collected after the end of the case study. We can see that the participation has been practically
constant (o slightly decreasing) for the whole duration of the experiment. In order to understand
whether users were faithful or continuously replaced by new users we investigated their playing

Table 5.2: General stats. (DoP means day of play, i.e. the number of all the day of play of each players.)

Phase Last Day Users Sessions DoP Tiles AirPins Add. (Mod., Del.) AirSquares
1 11-03 320 2648 1318 1503 35387 (1755, 147) 0
2 11-17 132 1605 967 801 27614 (4545, 532) 0
3 12-01 105 1206 810 245 9998 (6552, 794) 2939

Extra 12-23 64 332 220 42 667 (158, 41) 175
Tot 12-23 341 5780 3315 2591 73666 (13010, 1514) 3126
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Table 5.3: Cities stats. (DoP means day of play, i.e. the number of all the day of play of each players. AP means AirPins, AS AirSquares.)

Phase City Last Day Teams Users Sessions DoP Tiles AP Add. Mod. Del. AS

1 Antwerp 11-03 2 13 55 47 36 193 17 1 0
2 Antwerp 11-17 2 7 51 39 23 499 24 14 0
3 Antwerp 12-01 2 3 28 27 13 473 14 300 34

Extra Antwerp 12-23 2 5 33 29 4 44 3 19 12
1 Kassel 11-03 6 55 572 296 351 9325 427 35 0
2 Kassel 11-17 6 37 724 334 371 16326 2532 215 0
3 Kassel 12-01 5 31 529 289 143 5371 2274 169 1623

Extra Kassel 12-21 5 21 121 72 25 423 20 1 56
1 London 11-03 10 137 1004 513 586 13757 760 56 0
2 London 11-17 10 55 550 419 266 6825 1050 272 0
3 London 12-01 10 42 396 329 47 2851 2483 297 670

Extra London 12-19 8 28 112 68 11 183 98 19 47
1 Turin 11-03 11 65 781 301 425 11333 517 44 0
2 Turin 11-17 9 33 280 175 141 3964 939 31 0
3 Turin 12-01 8 29 253 165 42 1303 1781 28 612

Extra Turin 12-19 3 10 67 51 2 17 37 2 60
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Figure 5.8: On the left, the number of active users for each day of the experiment starting from
09:00 of 2013-10-21. On the right, the Activity Score cumulative graph. The Activity Score is
defined for each user as the number of actions performed in the game (counted actions are: game
start; revenue, bonus and achievements claim; AirProbe purchase, edit or delete; Tile or AirSquare
purchase). For each value of the Activity Score, the graph shows the number of users with a greater
score.
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Figure 5.9: On the left, the Day of Play (DoP) cumulative graph. For each value of the DoP, the
graph shows the number of users which played at least that number of day. On the right, the
distribution of users averages (how many user had a certain average) for each phase.

habits. The right part of Fig. 5.8 shows user activity. We defined an Activity Score for each user
which consists of the number of actions performed by a user during her game history. Actions
accounted for are: game start; revenue, bonus and achievements claim; AirProbe purchase, edit
or delete; Tile or AirSquare purchase. The mentioned graph reports on the x axis the Activity
Score and in the y axis the number of users with an Activity Score greater than the relative x
axis value. It is fairly visible in all curves (except Antwerp) a change in the slope, approximately
at the score value 103. This threshold helps us to understand the composition of our ensemble
of players. At a global level, ∼ 100 of players were very active, having performed thousands of
actions, while the rest of the users were more ’occasional players’. The existence of a significative
ratio of motivated users is exactly what we needed in order to monitor the evolution of the opinion
during the experiment. In order to confirm the existence of a core of users that actually played for
almost all the case study, we elaborated a cumulative Day of Play graph, reported in the left part of
Fig. 5.9. We calculated for each user the number of days in which she played at least once (DoP).
Then, similarly to what we did in the right part of Fig. 5.8, we reported on the x axis the DoP and
on the y axis the number of users with a DoP equal or greater. Again, it is quite visible a sort of
threshold more or less near 30 DoP (the whole case study lasted 42 days), with a corresponding
value of ∼ 100 users. We can thus affirm that, in the ensemble of our users, we managed to
gather an important core of players that actively contributed to the case study with constance and
motivation.

Basic statistical analysis

In this preliminary analysis, we simply determined the average value of the AirPins for each day,
neglecting the spatial positions, and then we measured the corresponding distribution in each
phase. In the right part of Fig. 5.9 we report the distributions. We observe a noticeable shift in the
distributions, pointing out that the opinion is changing coherently. We shall analyze in the following
sections the causes, the dynamics and the consequences of this shift.

Once that the nature of our community of volunteers is clear, we can analyse their in-game habits.
We define a session of play as the consecutive time the user spent with a browser open on the
game interface page. The session time is measured as the difference between the timestamp of
the login and the timestamp of the last action. This loose definition does not distinguish between
the active playing time and the time the game window has been left open in the background, so it is
not a precise measure of the attention dedicated by our users, so that we will consider the session
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Figure 5.10: On the left, the daily number of sessions. On the right, the daily number of hours of
play.

time a sort of proxy for it.

In the left part of Fig. 5.10, we report the number of sessions registered during each day of play.
This number is decreasing during the experiment, probably because of the loss of users that can
be observed in the left part of Fig. 5.8. This loss of players is compensated by the large motivation
of the the remaining users. This is quite evident in the right part of Fig. 5.10, where we consider
the total time spent on the game each day, calculated as the sum of all the duration of the sessions
for that day. This number stays substantially constant for the whole case study, witnessing an
essentially uniform effort for all the challenge duration.

5.4.2 Game dynamics

The main interaction of players with the game is through the AirPin (AP), which is the expression
of players opinions about air pollution, annotated on a map. Players, after buying tiles of the
map with virtual credits, had to place their estimations of air pollution in terms of µg/m3 of black
carbon. This annotation (AirPin) was performed by clicking on a point of the map sufficiently far
from previous annotations, and by specifying the desired value with a slider. The daily number of
APs added, modified or removed, is reported in Fig. 5.11, respectively in the top, in the bottom
left and in the bottom right part. The magnitude of the daily AP input flow is around 103 for the
whole challenge fluctuating a lot. The daily quantity of AP modifications or deletions gives us hints
about the annotation behavior of players. Both pictures, in fact, show peaks after day 14 and
day 28, when the phase and the rules of the game were modified. In phase two the revenues
were harder to get, while in phase three AirSquares were introduced. The two peaks show that
players acknowledged that something changed in the game and adapted their annotations to the
new game conditions. The value assigned to APs could be chosen between 0.00 and 10.00µg/m3

and could be selected continuously with a slider. The general usage of these values in the three
phases is reported in the top left part of Fig. 5.12, while the other graphs report the situation for
Kassel, Turin and London (clockwise). In the first phase, we observe an important peak located
in the middle of the scale. In each city we observe how players estimate center around 5µg/m3

(only in Kassel we detect an additional peak near 0, probably because of the presence of wide
gardens included in the game area). This trend can be explained by considering that the proposed
measurement unit of AirPin values was unfamiliar for almost all players. Therefore, when guessing
values on an unknown scale, it seems reasonable to be attracted toward the center of it. This
choice is not correct in this case, since black carbon concentrations in urban areas are in average
around 2µg/m3. In fact, in each graph of Fig. 5.12 we can observe how, in the following phases,
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Figure 5.11: On the top part, the daily number of AP added. On the bottom left and right, respec-
tively, the daily number of AP modified or deleted.
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Figure 5.12: Clockwise, from the top left: the usage of the scale in the overall, for Kassel, for Turin
and for London in each phase of the challenge.
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Figure 5.13: Clockwise, from the top left: the daily density graph in the overall, for Kassel, for
Turin and for London. In these graphs, each column represents the usage density histogram of the
scale for a given day. The color corresponds to the ratio of opinions in the corresponding bin (0.0
is white, 1.0 black). Bins size is 0.5 µg/m3.

where the actual measurements collected on the field started to seep out, the distributions shift
towards lower values. By comparing the figures in Fig. 5.12 it is also interesting to note that in
phase one the city of Turin is perceived by its citizens as the most polluted, followed by London.
This was an expected result, since Turin is known to be one of the most polluted European city, due
to industrial production, urban traffic and a particular conformation of mountains and hills around.
The evolution of the distribution of the air quality opinion is elaborated in Fig. 5.13 as density
graphs. These graphs show how the daily opinion in the challenge for Kassel, Turin, London and
in total is distributed. We observe that the average of the distribution shifts toward lower AP values
at the beginning of each phase. Also, a sort of collapse of the distribution is visible for the last
phase, where citizens possibly learned the black carbon concentration values of their environment.
We would like to point out that Fig. 5.13 is portraying the evolution of the perception of the air
quality, but we are mainly interested in the relation between the perception and the real values.
More precisely, we are interested in the difference between estimated black carbon concentrations
and sensor box measurements, to which players were exposed by buying AirSquares. Moreover,
users have the opportunity to be informed on values probably perceived as the true values, even
though in aggregate form (AirSquares show the average between the measures of the sensor
boxes in a certain area). Are we sure that they are actually learning something instead of just
copying? To understand this we need to monitor the evolution of the difference between values
of AirPin added (or modified) and the value of the AirSquare containing it. This analysis will be
thoroughly described in Deliverable 5.2. Here, we report the heat map of the AirPin values in the
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three phases for Kassel, London and Turin in Fig. 5.14, Fig. 5.15 and in Fig. 5.16 respectively. As
already pointed out, the overestimation of pollutant concentrations in phase one is detectable for
all cities. Players located the pollution mainly on main roads and crossroads, while gardens and
rivers where perceived as cleaner. In phase three, i.e. as soon as the AirSquare values are made
available, they changed opinion substantially. This clearly denotes that they were prone to change
their mind. In deliverable 5.2 we will try to understand whether this opinion shift simply follows the
AS values or is a consequence of a sort of virtual awareness.
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Figure 5.14: From the top, for phase 1, 2 and 3: the heat map of AP values for Kassel. Values in
the key are, as usual, µg/m3 of Black Carbon. The opacity is an related to the number of AirPins
in that point.
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Figure 5.15: From the top, for phase 1, 2 and 3: the heat map of AP values for London. Values in
the key are, as usual, µg/m3 of Black Carbon. The opacity is an related to the number of AirPins
in that point.
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Figure 5.16: From the top, for phase 1, 2 and 3: the heat map of AP values for Turin. Values in the
key are, as usual, µg/m3 of Black Carbon. The opacity is an related to the number of AirPins in
that point.
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