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Executive Summary

The EveryAware platform, cosisting of a SensorBox, a smartphone and the backend system, which
is decribed in detail in Deliverable 1.1, supplies information on noise and air quality to the user
community. The main aim of this document is to investigate how the EveryAware platform should
be used in order to fulfill data coverage requirements for specific tasks in a scientifically sound
way. To do so, one should take the highly dynamic behaviour, both in space and time (i.e. spatio-
temporal variability), of noise and air quality in urban environments into account. Both noise and
air quality are locally influenced by the emission sources. In contrast to noise, which dies out
almost instantaneously after the source stops producing it, air pollutants stay in the atmosphere
for longer periods, yet they get diluted, transported and transformated. The location and time of
measurement is thus heavily determined by the local circumstances at that specific point in space
and time. One measurement at that location thus provides a spatio-temporal snap-shot, which is
not necesserily representative for a longer period or greater area.

The specific tasks where the EveryAware platform is used for by the user community are event-
based measurements, the mapping of the local noise and air quality or exposure monitoring to
these pollutants. Based on several Pilot Cases and Beta Test Cases (which are further discussed
in Deliverables D3.1 and D6.2) the data coverage requirements to satisfy the specific measurement
goals were investigated for air quality and noise. Key results from this assessment for air quality
were:

• Repeated measurements are crucial to get a representative figure of the air quality. Mobile
collection of data is the most suitable data collection method to obtain repeated measure-
ments, covering a much larger area than would be obtained by stationary measurements
with the same number of SensorBoxes.

• To draw broad scale pollution maps street level aggregation is a first useful and in many
cases sufficient step. This levels out part of the variability that is related to traffic discontinuity
and short-term incidents, but might underestimate intra-street variability.

• Taking into account the large data needs to get a representative picture of urban air quality
and the fact that, both because of its cost and its technical complexity, the SensorBoxes will
be distributed to a rather limited group of people (as opposed to the Widenoise app), data
collection should focus on a clearly defined time frame and area in order to obtain sufficiently
repeated air quality measurements. This calls for a targeted data collection approach.

Noise measurements is not confined by additional harware needs such as a SensorBox for air
quality measurements and could be made by the entire EveryAware user community. However, the
results of the Beta Test Cases and Pilot Cases demonstrate that uncoordinated sensing across a
large area does not lead to dense spatial and temporal coverage. Reaching dense coverage with-
out coordination would require massively more contributors, which may not be attainable in the
short term. An alternative approach is to foster collaboration between smaller groups of highly
motivated contributors that live close to one another. By coordinating the actions of such groups
it is possible to achieve dense spatio-temporal coverage, albeit for much smaller areas. The key
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findings for data coverage with respect to noise measurements is to move towards a more coordi-
nated, goal-driven approach by devising targetted data collection protocols.

In addition to the EveryAware measurements, interpolation methods could potentially estimate air
quality and noise at points in space or time where measurements are lacking. The second aim
of this report is to assess the potential of interpolation methods to increase the EveryAwere data
coverage. The key finding of this assessment was that due to the central shared assumption of
a continuous surface generic interpolations methods are not that suitable for interpolation urban
noise across large areas, due to the limited spatial and temporal reach and the effect of obstacles
such as buildings. Also the highly dynamic behaviour of air pollutants in an urban environment
and the fact that the urban outdoor environment largely consists of discontinuous line elements,
interferes with the application of the described interpolation methods. Studies in which interpolation
methods were used for air quality are generally conducted on a much lower resolution (e.g. yearly
averages, 5 km by 5 km grids) than what would be suitable for EveryAware.
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Chapter 1

Overview

This document gives a description of a part of the work that has been carried out in the WP4 of the
EveryAware project. The final objective of this document is to derive a list of recommendations on
data collection and data handling so that a sufficient data coverage during the deployment of the
EveryAware case studies is reached.

To reach this goal, the spatio-temporal characteristics and data coverage of air quality and noise
in urban environments was investigated based on literature review and several pilot cases. The
assessment is subdivided in different sections. Firstly, a methodological framework is defined by
which data coverage in EveryAware is discussed. Its relation to the measurement goals and data
collection schemes is established. Data coverage for air quality monitoring is discussed in a second
section. Air quality is spatially and temporally very heterogeneous, exhibiting high gradients over
short periods or distances. Data coverage for air quality monitoring is assessed with this highly
variable background in mind based on a literature review and three pilot cases. Conclusions from
this section for the development of the EveryAware Test Cases for air quality monitoring are drawn.
The final section of the data coverage assessment concerns noise. Within the context of the
EveryAware project we focus exclusively on the problem of environmental noise. Environmental
noise is the noise people are exposed to in their daily lives as a result of various human activities,
such as those related to transport, industry and leisure. Several campaigns have been set up using
WideNoise to measure noise in a daily environment. Each of these campaigns had specific goals.
The data coverage of the campaigns is discussed in this documents. The data coverage statistics
that characterize these campaigns are highlighted, and can assist in estimating data coverage of
the test cases through extrapolation.

The revision and use of interpolation methods has been carried out. An overview of the most
commonly applied interpolation models in environmental sciences is providedand their potential of
application in EveryAware has been assessed.
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Chapter 2

Data coverage

2.1 Introduction

2.1.1 Definitions

In EveryAware, data coverage is defined in two domains: (1) temporal coverage and (2) spatial
coverage. Coverage is a relative concept. Temporal and spatial data coverage is called sufficient if
the underlying physical reality is adequately described. This depends on the goals for which data
are collected, and on the spatial and temporal variability of the feature that is measured (e.g. air
quality at a specific location). As such coverage is intrinsically linked to representativeness.

For instance, a certain area can be properly spatially covered but only for one point in time for each
year. In this case temporal coverage is poor if the underlying variability during the year is high and
we want to draw conclusions on a broad time frame. However, if the underlying physical reality, e.g.
the spatial co-ordinates of a road, do not vary very much in time, temporal coverage is sufficient.

Data coverage is directly linked with the information requirements to serve the data collection
goals. A spatio-temporal snap-shot of air quality or noise can be obtained by one measurement at
a given location in space and time. In order to get a representative estimate of air quality or noise
level at a given location, however, data collection should be increased to deal with the temporal
dynamics of the pollutants. Urban air quality as well as urban soundscapes are highly dynamic
and the air quality or sound level that is measured or heard at a certain moment and/or location is
not necessarily representative for that time or place.

In addition to the temporal and spatial coverage, the temporal and spatial granularity is another
integral feature of the spatio-temporal sensor data of EveryAware. It reflects the level of detail,
both in time and space, by which an event is characterized. It is the level of detail at which events
are captured in dimensions (space, time). Granularity also relates to the fact that the space-time
frame associated to an event of interest can be envisaged at several levels of detail (e.g. hour, day,
month, street, urban, etc.).

The detail discernible in the EveryAware database depends on the temporal and spatial resolution
of the sensor and refers to the size of the smallest possible events that can be detected. Theoret-
ically, very short (temporal resolution of the sensor) and localized (spatial resolution of the GPS)
events could be discernible from the point data of the EveryAware database. Temporal resolution
is 5 to 15 seconds in case of a WideNoise data entry and one second in case of a single air quality
measurement with the EveryAware SensorBox. Spatial resolution depends on the distance that
the sensor has travelled in that time, and on the spatial accuracy of the GPS.

Finally, although a single sensor datum has a very narrow spatial resolution, the measurement
itself may be influenced by distant sources. Noise or air quality measurements may be influenced
by sources at a few to hundreds of meters, depending on e.g. the noise or air pollution source
characteristics, pollutant dynamics, atmospheric residence times and meteorological conditions.
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As data coverage requirements depend on the different goals to which the EveryAware sensor
measurements can serve, these are described in more detail in section 2.1.2. Spatio-temporal
variability of air quality and noise is described further in 2.2 and in 2.3.

2.1.2 Goals of data collection

The reasons for volunteers to collect data within the EveryAware framework can be manifold.
Nevertheless, we assume that a significant part of the collected data will be used for the following
three data collection goals: (1) event-based measurements, (2) mapping of an area or (3) personal
exposure assessment.

Event-based measurements

EveryAware measurements are used to quantify a characteristic of an event. We define an event
as something happening, i.e. a discontinuity, that is clearly distinguishable from the normal spatio-
temporal pattern and clearly confined in space and time. An event is related to a specific source
that causes pollution or noise. An event-based measurement tries to capture the impact of an event
both in space or in time. Examples are a noise measurement during a concert or an air quality
measurement during roadworks. Of course, the sound level (as well as other acoustic parameters)
and the perception thereof varies a great deal over the course of the event and depending on
where in the venue the measuring device or the listener is positioned. Similarly, the emission of air
pollutants and resulting local air quality varies greatly during the roadworks. Events can also be
recurrent, e.g. a plane flying over every day. This adds still another source of temporal and spatial
variability.

For the detection of events (noise event, pollution event) individual point data are not very useful
because the lack of background measurements (i.e. measurements during the normal situation,
just before and after a particular event). In this sense, series of data (time series at one location
or space-time series of measurements collected in a mobile way) are far more informative. Time
series of noise or air quality data will exhibit peaks at occasions of significant difference with current
background conditions, and are therefore suitable to identify events in time. Spaio-temporal series
acquired by measurements at a fixed time interval along a certain route are suitable to identify
exceptional spatio-temporal events such as air pollution hotspots at congested roads during the
morning rush.

Mapping the (local) area

EveryAware measurements are used to map air quality and noise in a given area. A map can be
used to display point measurements. However, these are merely snapshots of the situation at a
specific moment in time with little broader relevance. To be useful for personal or community de-
cision making, maps need to give a more representative picture by data aggregation over relevant
time frames and locations. The spatial and temporal coverage needs to be sufficiently high to allow
for this aggregation. Temporal coverage needs to be in line with the time period for which the map
is valid (e.g. average pollution during morning peak hours on weekdays in September).

Personal exposure

EveryAware measurements are used to compute personal exposure to air pollution or noise during
a specific time frame. When repeated, these personal exposure data can give rise to more gener-
alised personal exposure patterns which can be used for optimising personal choices or community
choices.
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2.1.3 Data collection schemes

EveryAware measurements basically all have the same data structure. Each measurement is
characterized by time, location, parameter value and subjective annotation or tag. As such a
spatio-temporal dataset (E) is acquired. E = {x1,x2, · · · ,xn} where xi = (timei, locationi,
measurementi, annotationi, tagi). Nevertheless, data collection modes may be very different. An
overview of the most commonly used data collection modes is given below. The data collection
modes are assessed on temporal and spatial coverage, planning, effort and commitment of the
users.

Targeted versus opportunistic data collection

In a targeted data collection scheme, volunteers deliberately plan and carry out measurements
with a specific purpose in mind. They concentrate efforts in a specific area over a specific time
frame in an attempt to get a representative picture of reality. In an opportunistic data collection
scheme, on the contrary, measurements are collected by volunteers in their normal daily routines.
The participant does not decide on measurement location and time from his/her interest to monitor
a given event. They do not envisage to cover a specific period of time, nor a specific location or
route. Opportunistic data collection (ideally) requires measurement devices that measure contin-
uously without any intervention of the user. It will result in a (possibly) sparse dataset of sensor
recordings at minimal planning, efforts and commitment for the user.

Stationary versus mobile data collection

Stationary or fixed data collection refers to a collection scheme in which measurements are
made at one specific location over a well-defined time window (time series of data) with a mea-
surement instrument fixed on a wall or a pole without permanent supervision or presence of a
volunteer. Stationary data collection is typically carried out in a targeted fashion, by one individual
or by a group of people. The spatial coverage may range from one specific location to the coverage
of a spatial grid. As such, the temporal dynamics of a parameter are measured in a spatially explicit
fashion. The temporal data coverage is high. Spatial coverage depends on the number of deployed
measurement devices in comparison to the extent of the area that is monitored, but is –at least for
air quality monitoring– still rather high compared to classical networks of monitoring stations. The
planning, efforts and commitment for targeted stationary data collection are moderate.

Mobile data collection refers to the collection of data along a route. For example, a volunteer
performing measurements while commuting to and from his work is performing a mobile data
collection. As such systematic spatio-temporal datasets from a route (e.g. a couple of streets)
over a well-defined time frame (e.g. during the morning peak hours) are acquired. Mobile data
acquisition can be performed in targeted or opportunistic (random) fashion.

- Targeted mobile data collection is performed by volunteers carrying out systematic mobile
measurements in a well-defined area (e.g. a couple of streets) and time frame (e.g. dur-
ing the morning peak hours). The planning, efforts and commitment for this type of mea-
surements is high, but this type of data collection can result in a high spatial and temporal
coverage. Alternatively targeted mobile data collection can also envisage the collection of
systematic personal exposure data sets.

- Opportunistic mobile data collection along random routes is performed by volunteers who
collect sensor data along their route, where-ever they go. Although these measurements
were not actively planned by the user’s community, they are useful for mapping and exposure
calculations. The planning, efforts and commitment for this type of data collection should be
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relatively low, but depends on user friendliness of devices, i.e. the capability for continuous
measurements without intervention of the user. The data coverage depends on the variability
(space, time) and repetition of the routes taken by the volunteers, and the time spent outdoor.

Semi-stationary data collection refers to the collection of data for a limited period of time (e.g.
one hour) at a fixed location by a volunteer carrying the measurement device. In practice data
collection with portable measurement devices can lead to a mix of mobile and semi-stationary
data, both in targeted data collection schemes as in opportunistic data collection schemes, e.g.
when a volunteer waits for a bus for ten minutes or when he attends an outdoor festival for 3 hours.

2.2 Air quality monitoring

The assessment of data coverage for air quality monitoring is based on insights from three targeted
measurement campaigns: (1) a measurement campaign carried out in the CLIMAQS and IDEA
projects (funded by the Flemish Agency for Innovation by Science and Technology) - this data set
can be thought of as an opportunistic data set, i.e. covering same route but not systematically in
time, (2) a recent systematic mobile measurement campaign carried out in Antwerp with targeted
mobile data collection, and (3) a pilot case study in Antwerp conducted during the EveryAware
partner meeting in Antwerp (July 9-10, 2012).

The EveryAware SensorBox was not used in any of the campaigns here. However, all the three
campaigns focussed on traffic related pollutants (UFP, PM10 and BC) in urban areas. SensorBox
data are most likely to behave similar to these parameters. Therefore, insights and conclusions
from these campaigns are valuable for the set-up of the case studies in EveryAware. Additionally,
the EveryAware SensorBox will be calibrated against the high quality device used in the second
monitoring campaign (BC micro-aethalometer). The use of the SensorBox also shows parallels
with the sensors used in the pilot cases. The use of the SensorBox –and other air quality mea-
surement devices– is much more complicated than for example the use of the WideNoise app for
noise. Air quality devices need (repeated) calibration (see D1.1), they need a methodical operation
with and are thus not suited for opportunistic data collection. Data collection of the pilot campaigns
used a targeted mobile data collection, which is also the appropriate data collection method using
the SensorBox.

2.2.1 Urban air quality

The urban air contains a complex mixture of potentially noxious components such as nitrogen
oxides (NOx), carbon monoxide (CO), ozone (O3), volatile organic compounds (VOC) and particles
of mixed composition, ranging in size from a few nanometer to several micrometer. For most
pollutants urban concentrations are composed of a regional background with on top of it a more
elevated urban background, and finally a source dependent local contribution, as described initially
for PM10 in [Lenschow et al., 2001]. The local air quality component in urban areas varies highly
both in space and time. It is highly related to traffic, and thus to local variability in traffic. It is further
strongly affected by local street lay-out and meteorological circumstances, which affect dispersion,
and short-term chemical and physical transformations (e.g. oxidation of NO to NO2, condensation
and coagulation of particles, etc.)[Nikolova et al., 2011]. It contributes disproportionally to human
exposure to air pollutants, as these pollutants are emitted near nose height and in close proximity
to people [Dons et al., 2011, 2012; World Health Organization, 2000].

The best indicators of the presence of traffic pollution are those air pollution components that leave
the vehicle tail pipes in a relative large amount compared to the concentrations already present in
the urban background, and for which no other major sources are present in the urban atmosphere.
Nitrogen oxides (NOx), Ultra Fine Particles (UFP), Black Carbon (BC) and the smallest fraction of
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fine dust (PM1) are known to comply very well to this requirement (e.g. [Dons et al., 2011]). All
of these components are to a certain extent correlated to each other, but they all have their own
dynamics. This is described in more detail for particles in next paragraph.

2.2.2 Spatial and temporal variability of urban air quality: short literature review

Particulate air pollution is a mixture of particles that vary in number, size, shape, surface area,
chemical composition, solubility and origin, where the size distribution is typically trimodal, in-
cluding coarse particles (aerodynamic diameter > 2.5 µm), fine particles (aerodynamic diameter
between 0.1 and 2.5 µm) and ultra-fine particles (UFP, aerodynamic diameter < 0.1 µm) [Pope III
and Dockery, 2006]. PM10 is primarily derived from suspension and re-suspension of solid ma-
terial, and contributes greatly to the mass of the total suspended particles in urban environments.
In contrast, UFP contribute little to the mass of the total suspended particles but they are highly
abundant. The urban particulate cloud is constantly receiving UFP from primary emissions from
combustion sources in transportation, industries and power generation, and by secondary for-
mation by atmospheric photochemical reactions and conversion processes [Seinfeld and Pandis,
2006; Westerdahl et al., 2005]. UFPs have a transient nature with short life times (minutes to
hours) and rapidly grow through atmospheric processes of coagulation and/or condensation to
larger complex aggregates [Pope III and Dockery, 2006]. Therefore, the highest concentrations of
ultra-fine particles are found in the vicinity of the primary sources, for example, near busy roads
where particle number concentrations are typically between 104 and 106 particles cm−3 depending
on driving speed, fleet composition and meteorology [Nikolova et al., 2011] and ultra-fine particle
number concentrations decrease rapidly with distance from the emission sources [Hagler et al.,
2010; Zhu et al., 2002]. Therefore important differences, in space and time, of UFP concentrations
between urban micro-environments are induced [Hudda et al., 2010].

Small-scale variations in PM10 concentrations have also been reported elaborately in the litera-
ture. Temporal patterns of PM10 have been observed over seasons [Monn et al., 1997], weeks
[Monkkonen et al., 2004], days [Roosli et al., 2000] and hours of the day [Gomiscek et al., 2004]
in urban settings and were attributed to the temporal dynamics of atmospheric conditions and the
PM10 sources. The spatial variability of PM10 within the urban environment differs in the literature
from rather limited [Roosli et al., 2000] to substantial [Chan et al., 2001; Wilson et al., 2006], which
may be predominantly caused by the spatial heterogeneity of the main sources.

The soot-black carbon (BC) component of the urban fine particle cloud has been associated with
adverse health effects (e.g. [Brugge et al., 2007]). From a study in Helsinki, it was shown that
typically more than 90% of BC resided in the PM2.5 fraction [Viidanoja et al., 2002]. A major
source of BC in urban areas is direct combustion (especially from diesel combustion). BC shows
a high spatial variability, and high contrasts between busy streets and background locations in the
same city were found for BC [Boogaard et al., 2011]. The high spatial variability of BC is also
reported in other studies [Wang et al., 2011] which found a high spatial divergence in BC between
several monitoring sites in Rochester, New York. Also for BC a high temporal variation has been
observed (daily and seasonal trends, [Latha and Badarinath, 2005]). The high spatial and temporal
variability of BC concentrations in relation to the time-activity pattern of people results in different
exposure patterns [Dons et al., 2011, 2012].

We used three data sets from mobile monitoring campaigns to investigate to what extent a lim-
ited set of mobile measurements spread over different days and different times of the day allows to
draw conclusions on spatio-temporal variation in urban air pollution and to map urban air quality for
different data collection goals. The first and second data sets were collected by VITO in measure-
ment campaigns that were part of the IDEA project (funded by the Flemish Agency for Innovation
by Research and Technology). The third data set was collected specifically for EveryAware. The
first campaign focussed on UFP and PM10, the second and third campaign focussed on BC.
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Table 2.1: Overview of some street characteristics at a selection of streets along the mobile moni-
toring routes in Antwerp and Mol.

Street name Speed limit Configuration Traffic density [day-1]*
light heavy total

Antwerp Bleekhofstraat 50 km h-1, 30 km h-1 1 lane 4 074 8 4 082
Provinciestraat 50 km h-1 1 lane, street canyon 13 495 4 13 499
Carnotstraat 50 km h-1 1 lane, street canyon, separate biking lane 21 396 119 22 515
Plantin en Moretuslei 70 km h-1 2 lanes, separate biking lane 42 961 420 43 381

Mol Turnhoutsebaan 70/50 km h-1 1 lane, separate biking lane, commercial and residential 9419 297 9716
Statiestraat 50 km h-1 1 lane, street canyon, residential and commercial 4143 262 4405
Rozenberg 50 km h-1 1 lane, separate biking lane, residential 5603 115 5718
Kleinendijk 50 km h-1 1 lane, green (recreational) zone NA NA NA
Gasstraat 50 km h-1 1 lane, residential 1852 0 1852
Voogdijstraat 50 km h-1 1 lane, street canyon 6023 326 6349

*Data source: Traffic Centre Flanders.

2.2.3 Air quality case study: PM10 and UFP

Study site Mobile measurements were performed at two locations, Antwerp (51◦12’N, 4◦26’E)
and Mol (51◦11’N, 5◦07’E), Belgium. Antwerp is a medium-sized city (480 000 inhabitants, 985
inhabitants km−2), Mol is a provincial town (34 000 inhabitants, 299 inhabitants km−2). At both
locations, a fixed route was defined using cycling paths or the right side of the road. The route
in Antwerp was approximately 5 km long, the route in Mol 10 km. Average travelling time for the
entire route were approximately 25 minutes for Antwerp and 50 minutes for Mol. Although the
major part of the mobile routes were located in residential area, streets of differing configuration
and with differing traffic dynamics were included in this study. The results presented in this study
are focussed upon a selection of six streets in Antwerp and Mol which reflect the variation in traffic
density, driving speed and street configuration (Table 2.1). Additionally, a recreational area with
very low traffic density was included along the route in Mol. After a data quality control, 24 runs
on 8 days in the period between March 16 and April 8, 2009 were withheld in Antwerp. In Mol a
total of 20 runs were performed on 10 measurement days between April 7 and April 23, 2010. The
monitoring hours ranged from 6 am until 6 pm, but most of the runs were made between 10 am and
4 pm. The repetition frequency of the measurement runs (number of runs per day, time of the day)
was partially determined by practical and organizational circumstances. This led to a non-uniform
distribution of the measurements over the day. All measurements were carried out during working
days.

Mobile platform Portable UFP and PM monitors were installed on a bicycle (the so-called
Aeroflex, Fig. 2.1) which was additionally equipped with a GPS (Garmin Forerunner) to register
measurement location and a smartphone (Openmoko FreeRunner) to synchronize the sensors
and to communicate the data to the central database. A TSI P-Trak ultra-fine particle counter
(model number 8525) was used to measure the number concentration of ultrafine particles within
a range from 0 to 5 · 105 particles cm−3 at a temporal resolution of 1 sec. A DustTrak DRX 8534
was used in Antwerp for measuring PM10 mass concentration (µg m-3), whereas in Mol the PM10
concentration was measured by a GRIMM 1.108 Dust monitor. The instruments were recently
calibrated and operated at flow rates of 1.7 L min−1 and 1.2 L min−1, respectively. The outdoor
temperature was within the operating temperature range. PM10 concentrations were measured at
a 1 and 6 second resolution in Antwerp and Mol, respectively. A similar mobile platform set up as
the mobile set up for Mol was shown to have a robust performance in a similar urban environment
[Berghmans et al., 2009].

Analyses An analysis of the temporal and spatial variability of the air quality measurements was
conducted to assess the potential of using mobile measurements to distinguish between episodes
of low or high particle concentrations, and between locations (streets) of contrasting particle con-
centrations. A post-hoc multiple comparison between measurement days, time of the day, or street
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Figure 2.1: The Aeroflex measurement bike from VITO.

was performed using the results of a Kruskal-Wallis test with a Bonferroni adjustment of the critical
value to compensate for multiple comparison. Given the relative nature of the spatio-temporal as-
sessment, errors due to instrumentation differences (e.g. DustTrak DRX 8534 vs. GRIMM 1.108)
and differences in meteorological conditions were reduced.

Given the spatio-temporal dynamics of the pollutants under investigation and the fact that mobile
measurements provide snap-shots of pollutant concentrations in space and time, an experiment
was conducted on the data to investigate data coverage in relation to data representativeness. The
research question addressed was how many mobile runs are needed to obtain a representative
estimation of the street-level air pollution. In this study, representative means that the estimation
is reasonably similar (max. 15% difference) to the value obtained from the entire mobile measure-
ment campaign. Additionally, we assessed how sensitive the results are for the timing of those
runs.

First, all the data were used to calculate an aggregated median pollutant concentration per street
over all the measurement runs. We preferred to use the median concentration because air quality
measurements are not normally distributed and skewed, so the median is a more representative
central tendency measure than the mean. Subsequently, median pollutant concentrations were
calculated per street based on mobile measurements of a cumulatively growing data volume that
was obtained by a cumulative addition of measurement data from randomly selected runs (random
selection without replacement). The median pollution concentrations in function of the increasing
number of runs were compared to the overall median value to see after how many sampled runs
the medians converged to the overall median. Convergence is obtained when the median of the
sampled runs deviates less than 15% from the overall median, and does so consistently when
adding new runs. The pseudo-code for this experiment is given below. The pseudo-code was run
a high number of times (10 000 iterations) to guarantee a high number of possible combinations
of runs. The number of runs needed for convergence for each combination of randomly selected
runs was plotted in a density plot.

Results A clear distinction is observed between the spatio-temporal dynamics of UFP and PM10,
respectively (Fig. 2.2). UFP showed a high variability in space (between streets) and time (be-
tween measurement runs). The temporal changes of UFP concentration in Antwerp and Mol were
present in both busy and quiet streets. High spatial differences between streets were also ob-
served, with high concentrations for Provinciestraat in Antwerp and for Voogdijstraat in Mol. Other
streets consistently showed lower UFP concentrations. In contrast to the spatio-temporal pattern
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Algorithm 1 Pseudo-code to determine the number of runs needed for convergence
Require: Mobile measurements made during k runs along the same route of UFP and PM10

randomly permute the k runs;
calculate overall median UFP and overall median PM10;
for i = 1 to k do

select pollutant data from the i first permuted runs;
calculate the median UFP and median PM10 concentration, save;
calculate the difference of median UFP and median PM10 with overall median UFP and overall
median PM10, respectively (as %), save;

end for
identify the number of runs at convergence; save

of UFP, PM10 showed a quite different pattern. The variability in space for PM10 was very limited
compared to the variability in time. The PM10 concentrations did not differ a lot between streets.
The variability in time was high between runs carried out on different measurement days, but much
lower between runs carried out at different hours within the same measurement day.

A statistical analysis of the spatial pattern of UFP and PM10 concentrations revealed significant
concentration differences between the streets of the route in Antwerp and Mol (Fig. 2.3, Chi-
sq. = 2711, p < 0.01). The highest UFP concentrations were measured in Carnotstraat and
Provinciestraat, followed by Kroonstraat, which were significantly higher than the UFP concen-
trations in Plantin en Moretuslei and Bleekhofstraat. The lowest UFP concentrations were found
in Langstraat. In Mol, significantly different UFP concentrations were also found between sev-
eral streets (Fig. 2.3, Chi-sq. = 9766, p < 0.01). The UFP concentration in Voogdijstraat was
significantly higher than in all the other streets along the route, whereas the concentrations at
Kleinendijk were significantly lower than in the other streets. Between both extremes, Voogdijs-
traat and Kleinendijk, several other streets differed significantly in UFP concentration.

The spatial variability of PM10 was lower, but overall significant in Antwerp (Chi-sq. = 626, p <
0.01) and Mol (Chi-sq. = 46, p < 0.01). In Antwerp, measured PM10 concentrations were signif-
icantly higher in Carnotstraat in comparison to Provinciestraat and Kroonstraat, where the PM10
concentration was significantly higher than in all the other streets along the route (not shown).
The PM10 concentration in these streets, however, were not significantly different. The differences
in PM10 concentrations between streets in Mol were overall significant, but the multiple compar-
ison test revealed that the this significance was solely attributed to the difference in the PM10
concentration at Gasstraat which was significantly lower than in Statiestraat and Rozenberg. The
streetwise comparison did not reveal any other significant difference.

Experiment: How many runs are needed? One experiment was conducted (see Alg. 1), by
which mobile runs were randomly and cumulatively added to calculate median street UFP and
PM10 concentrations from a cumulatively growing dataset of mobile measurements. The data
set is quite sparse, and the time intervals for the mobile runs were different on every day. In
Antwerp, the total daytime interval in which mobile runs were carried out, was from 6 am until 6
pm. However, for many hours of the day only one or two runs were available. In Mol, measurements
were performed on a daytime interval from 11 am until 3 pm.

Results indicated differences between UFP and PM10 at both study sites (Fig. 2.4). For the anal-
ysis of the UFP data set, the maximal number of runs required for UFP for convergence was 18
(out of 24) for Antwerp and 16 (out of 20) for Mol. At both measurement locations, however, 75%
of the combinations convergence was already reached with a number of runs that was approxi-
mately 70% lower (7-8 instead of 24 runs in Antwerp, 6-7 instead of 20 runs in Mol). Inspection of
the results for the individual streets showed differences between the streets. In Antwerp, an early
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Figure 2.2: Median UFP and PM10 concentrations for the different runs (y-axis) at a selection of
streets (x-axis) in Antwerp and Mol. The different measurement days are indicated by the ticks
on the second y-axis. The colours are scaled between the extremes and differ between the plots.
White pixels represent no data.

Figure 2.3: Boxplots of UFP concentration in Antwerp (a) and Mol (b) and boxplots of PM10 con-
centration in Antwerp (c) and Mol (d) for a selection of streets.
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Figure 2.4: Plots of the number of runs needed for converge of the median concentration for UFP
and PM10 at the study sites of Antwerp and Mol. The histogram plot shows the number of runs
needed for convergence based on all the measurements, the coloured density plots show the
results for specific streets.

peak around 2-3 runs was observed in the density curve for Plantin en Moretuslei and Kroonstraat,
whereas this peak was shifted toward a higher number of runs (5 to 8) for Bleekhofstraat, Provin-
ciestraat and Langstraat, and a much higher value (15) for Carnotstraat. For Mol, most streets
showed a similar curve, except for Statiestraat and Voogdijstraat where the UFP measurements
only converged after a higher number of repeated measurement runs.

The differences between Antwerp and Mol were higher for PM10 than for UFP, yet a higher number
of repeated measurement runs were required at both locations. The maximum number of runs
needed for convergence reached values of 20 and 15 for Antwerp and Mol, respectively. 75%
of the combinations of runs reached convergence after 14 and 9 runs, respectively, which is a
reduction of the total number of runs by 40 to 55%. In general, convergence was observed after
a lower number of measurement runs for UFP than for PM10. The density plots of the different
streets at both study areas was not very different for most of the streets. Only Plantin en Moretuslei
in Antwerp generally needed a higher number of repeated runs and Kroonstraat a lower number
of runs in comparison to the other streets along the route. In Mol, Statiestraat needed a higher
number, and Rozenberg a lower number of repeated runs.

Discussion and Conclusion Small-scale spatio-temporal gradients in particle concentrations
are already well described in the literature (e.g. Monn, 2001, and reference therein). They are
caused by the spatio-temporal variability of a multiplicity of sources, dispersion and removal mech-
anisms. In an urban area, motor vehicle emissions usually constitute the most significant source
for UFP. Typical background concentrations are far below the urban UFP concentration, and have
a very small contribution to the urban UFP concentration [Nikolova et al., 2011]. The location and
lay-out of roads and the dynamics of the traffic (volumes, speed, fleet composition) are the main
factors affecting the spatio-temporal heterogeneity of the UFP concentration. Furthermore, atmo-
spheric dispersion, particle coagulation and particle deposition mechanisms are also influenced
by building density, by the geometry of the street and the urban canopy and by meteorology there-
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fore attributing to the spatio-temporal variability of UFP number concentrations. Our measurement
results are consistent with these findings in the literature. For UFP significant differences were
found between measurement days and between runs on the same day (Fig. 2.2). It is well known
that important diurnal changes occur in UFP concentrations due to changing traffic and other lo-
cal sources throughout the day and these source variations are likely to cause the temporal UFP
variations in our study as well.

[Lenschow et al., 2001] identified long range transport, motor vehicle exhaust and tyre abrasion and
resuspension of soil particles as the major PM10 sources in urban areas. All these components
have their own spatio-temporal dynamics. The contribution of urban background to the PM10
at the road, which was observed to be around 60% in Berlin [Lenschow et al., 2001] is more
important than the background component in UFP measurements at the roadside due to the short
atmospheric residence time of the latter. Our measurements indicate that for PM10 the differences
between the days are more pronounced whereas intraday variation is often non-significant. The
latter does not mean that intraday variability of PM10 on these days was non-existent, but may
be explained by the importance of the background contribution which masks the short-term local
variability of PM10. Overall, we found a higher small-scale spatial variation for UFP than for PM10.

To allow for a systematic comparison between different locations all data were aggregated at street
level. This streetwise comparison shows significant differences for UFP between streets both in
Antwerp and in Mol. For PM10 the spatial variability is lower. In Mol streets with higher traffic
volumes could clearly be distinguished from more quiet back-end streets. This is less apparent in
Antwerp, where UFP concentrations in the street with the highest traffic volume (Plantin en More-
tuslei) were surprisingly comparable to the streets with the lowest traffic volume (Langstraat), and
significantly lower than streets with intermediate traffic volumes (Carnotstraat and Provinciestraat).
This is caused by the street lay-out with a separate biking lane at several metres distance from the
traffic lanes and rather smooth traffic, whereas in Carnotstraat and Provinciestraat cyclists ride
right next to or even in the wake of the cars and traffic gets easily congested. The street-level
aggregation does not take into account intra-street variability. On the other hand this allows to level
out part of the variability that is related to traffic discontinuity and short-term incidents. We assume
most streets that were included in the measurement campaigns, to be discontinuous line sources
with rather homogeneous lay-out.

Data from runs on different days and on different moments of the day are aggregated. A potential
source of bias in this streetwise comparison is the fact that diurnal traffic patterns might be different
between streets, and that sampling could mainly have taken place at moments corresponding to
high traffic in one street (e.g. end of school) and simultaneous low traffic in other streets (e.g. not
affected by school traffic). Both issues can be tackled by increasing data coverage by increasing
the number of runs. This would allow to aggregate the data at a more detailed level, i.e. distin-
guishing non-homogeneous street sections and intersections, and aggregating data in relevant
time intervals, e.g. hourly averages, peak and off-peak hours, etc.

To find out how sensitive the results are for the number of runs and for the timing of the runs, we
carried out an experiment on the data. The results showed that the moment that convergence
is obtained for UFP differs from 1 to 18 or 16 runs for Antwerp and Mol, respectively. In fact, a
substantial reduction of 70% of the number of runs would still be enough to obtain a reasonable
estimate of the overall median concentration, but less so for streets with higher traffic density and
a canyon like configuration. A representative estimation of the air quality made on 1 run was
exceptional.

The street with the highest traffic density of this study (Plantin en Moretuslei), however, showed
the fastest convergence for UFP, probably due to the separate biking lane and the consistently
high traffic counts throughout the day. Its convergence pattern was comparable with the pattern
found for Kleinendijk in Mol, which is a recreational and green area with very limited local sources.
Therefore an a priori definition of a suitable number of runs based on traffic density is hard to
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(a) (b)

Figure 2.5: Overview of route 1 and route 2.

make. However, the results indicate that less runs would be needed for streets with low or smooth
traffic, whereas more runs are needed in streets with regular periods of congestion. Irrespective
of the street and traffic characteristics, the results suggest that it is better to have a spread of the
measurement runs over the considered daytime interval and over the entire measurement period,
than to have them concentrated. For PM10 the moment that convergence is obtained is generally
higher, and the reduction of the number of runs lower (40% in Antwerp, 55% in Mol). This can
be explained by the fact that the temporal variability of PM10 at the street is determined by the
variability of the local sources but mainly by the variability of the background concentration. In Mol,
a median PM10 concentration close to the overall median could be obtained after 10 runs, given
that these runs were made on the 10 different dates of the measurement campaign.

Our results indicate that the use of a limited set of about 20 mobile measurements carried out
on different days and different times of the day allows to distinguish streets with higher and lower
median pollutant concentrations in a significant way. Strictly speaking these relative differences
are only valid for the period of sampling, but assuming traffic patterns in all streets are similarly
affected by seasonal variations or holiday periods, these differences are indicative for the whole
year.

2.2.4 Air quality case study: BC

An exploratory study on the variability, both in space and time, of BC was conducted in Antwerp be-
tween 2012-02-13 and 2012-03-08. Measurements were made on a mobile platform –the Aeroflex
from VITO (Fig. 2.1)– that was equipped with a BC monitor and additionally equipped with a GPS
to register measurement location. The monitoring device and GPS were connected to a netbook to
synchronize the sensors and to communicate the data to the central database. BC concentrations
(in ng m−3) were measured by the portable micro-aethalometer (Micro Aeth. Model 52, Magee
Scientific). The filter ticket was changed at the start of each measurement day, the inlet flow rate
was set at 150 ml min−1 and a measurement was made each second.

Measurements were made along two fixed routes. The first route was approximately 2 km long,
the second 5 km. The starting point of both routes was a central monitoring station from the
Flemish Environmental Agency (VMM) at Pantin & Moretuslei. Although both routes passed mainly
through residential area, streets and places of different traffic intensity and lay-out were included
(Table 2.1).

The first measurement run of the day was always performed around 7 am, just before the morning
rush. The last run of the day was performed around 1 pm (Fig. 2.7). A total of 258 runs were con-
ducted along route 1, 112 runs along route 2. Most runs were made on Tuesday and Wednesday,
followed by Monday and Thursday (Fig. 2.6). Least runs were made on a Friday. A little less than
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Figure 2.6: Histogram of the number of measurement runs per day of the week for route 1 (a) and
route 2 (b).

Route 1

Hour of the day

N
um

be
r 

of
 m

ea
su

re
m

en
ts

6 7 8 9 10 11 12 13

0
10

00
0

20
00

0
30

00
0

40
00

0

Route 2

Hour of the day

N
um

be
r 

of
 m

ea
su

re
m

en
ts

6 7 8 9 10 12 14

0
10

00
0

20
00

0
30

00
0

40
00

0

(a) (b)

Figure 2.7: The number of measurement runs per hour of the day for route 1 (a) and route 2 (b).

a quarter of a million measurements were made at both routes over the entire study period.

Please note that the measurements made in this experimental study were not made by the Ev-
eryAware SensorBoxes which were unavailable at that time. Yet this case study provides useful
information for the EveryAware SensorBox deployment because BC was measured. BC is the
primary target air quality parameter for which SensorBox recordings may serve as proxies. Fur-
thermore, during the EveryAware case studies BC will also be measured using the same micro-
aethalometer devices to benchmark the SensorBox measurements. The objective of this section
is investigate the dynamics of BC concentrations in an urban environment and to its consequence
for data coverage. Both spatial and temporal aspects are highlighted.

Broad scale temporal dynamics To investigate the broad scale dynamics of BC, the data were
grouped according to day of the week and according to hour of the day. As such, for each combi-
nation a median BC concentration was calculated and plotted (Fig. 2.8). Variations between days
and hours of the day were observed. Peak BC concentrations occurred at Monday and Friday
morning from 8 until 10 am. The lowest concentrations were observed on Wednesday. Tuesday
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Figure 2.8: Plot of the median BC concentration in function of hour of the day and day of the week
for route 1 (a) and route 2 (b). The gray shaded area represents “no data available”.

and Thursday have median concentrations in between both extremes. The lowest concentrations
were as low as 2 µg m−3, the highest >8 µg m−3 and >10 µg m−3 for route 1 and 2, respectively.
From these plot, the high temporal variability is evident and mainly caused by the dynamics of the
(traffic) sources.

An important question for the EveryAware project is whether these temporal trends can be obtained
from measurement series with lower coverage. Therefore, a small data experiment was set up.
From the data sets of both routes, measurements were randomly selected for an increasing data
coverage (starting from one measurement per hour of the day and day of the week combination up
to 1000 measurements per combination). The trends as observed from the entire data set (Fig. 2.8)
are not represented well when only one measurement was used (Fig. 2.9). In this case, the
increased concentrations on Monday and Friday are not (well) represented, nor are the differences
between hours of the day (rush versus non-rush hours). One observation provides a limited snap-
shot which, as such, cannot be used to represent the general pattern in BC concentrations. Also
10 observations per day and hour combination still seemed to be a too low number (e.g. elevated
Monday morning concentration during rush hours is not visible). From 100 observations on, trends
start to appear: a similar variability between hours and days is observed as for the entire data
set (Fig. 2.8), although the number of measurements, and therefore the data coverage, is much
lower (100 versus several thousands). In conclusion, a coverage of a 100 measurements made at a
randomly selected moment in time (within a given hour of the day and day of the week combination)
and at a randomly selected location along a fixed route represents broad scale air quality dynamics
of a traffic related parameter (BC) satisfactorily.

Spatial variability – streetwise analysis The differences in BC concentration was compared be-
tween the streets by a boxplot analysis on all the measurements made in these streets (Fig. 2.10).
On route 1 the lowest concentration was observed at Dageraadplaats, the highest concentrations
were found in Plantin & Moretuslei and Wolfstraat. A clear connection with traffic may be observed.
Dageraadplaats and Korte Altaarstraat are places with low traffic intensities, whereas public trans-
port (busses) pass regularly at Lange Altaarstraat and Wolfstraat. The Plantin & Moretuslei is a 2by
2 lane route with the highest traffic intensities along the biking route. BC concentrations here are
generally higher than at places and streets with low traffic intesities. Also the variability between
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Figure 2.9: Trends between hours and days as observed from a data set with increasing coverage.
* The number of measurements randomly taken for each hour of the day and day of the week
combiation is given in the left column.
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Figure 2.10: Boxplot of BC concentrations in differnt streets on route 1 and route 2. Legend:
(route 1) PM, GB, KB, DP, KA, LA, WO are labels for Plantin and Moretuslei, Grotebeerstraat,
Kleinebeerstraat, Dageraadplaats, Korte Altaarstraat, Lange Altaarstraat, Wolfstraat, and (route 2)
PM, SP, QM, QU, FR, GS, KA, CA, PR, BL are labels for Plantin and Moretuslei, Stadspark, Quin-
ten Matsijsstraat, Quellinstraat, Franklin Rooseveltplaats, Gemeentestraat, Koningin Astridplein,
Carnotstraat, Provinciestraat, Bleekhofstraat.

the measurements at a given street, for which the interquartile range of the boxplot is indicative,
is much higher at the busy streets (PM, WO, LA) than at the quite streets (DP, KA). This may be
caused by (1) temporal fluctuations between hours (low concentrations before and after rush hour,
high concentration during rush hours) and (2) temporal fluctuations at a much finer temporal scale
(concentration drop right after car passage).

Along route 2, the lowest concentrations were measured at an urban green, Stadspark, where
continuous measurements were made during a 5 minute period each run. The highest concentra-
tion was measured in Provinciestraat, which is a street canyon with a relative high traffic intensity.
At the Franklin Rooseveldplaats, a square with concentrated public transport stops, the BC con-
centration was also very high with a remarkably low variance between the measurements. Other
streets with a high BC concentration are the Quinten Matsijslei, Quellinstraat and Carnotstraat.
The BC concentration reached in these streets are higher than or similar to the concentrations
measured at Plantin and Moretuslei, the street with the highest traffic intensity along the routes.

Spatio-temporal dynamics A visualisation of the spatio-temporal BC dynamics is given in
(Fig. 2.11). These figures stratify the measurements according to the consecutive runs, and in-
dicate the time and location (latitude, longitude). The mapped BC concentrations are shifted in
position between the runs to increase the readability of the figures.

There exists a pronounced spatio-temporal variability at both streets. Short peaks in the spatio-
temporal series result from a local (both in space and time) increase in BC concentration. These
are probably caused by the nearby passage of vehicles in a period of relatively low traffic intensity.
The spatial extent of these peaks is a function of the source concentration in the vicinity of the

2012 c© Copyright lies with the respective authors and their institutions
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Figure 2.11: BC concentrations at the Plantin & Moretuslei (a) at the Korte Altaarstraat (b) during
repeated passage of the mobile monitoring platform on Monday 2012-02-13.

source to the monitoring platform through time (i.e. the movement of the source relative to the
movement of the monitoring platform) and the dilution rate.

BC concentration at Plantin & Moretuslei seems to be higher at the eastern side of the street
than at the western side. The reason for this difference is unclear at the moment (higher traffic
volumes is a possible explanation). Nevertheless, it proves that a measurement at one side would
over/underestimate the concentration at the entire street, and therefore stresses the importance of
a sufficient spatial coverage.

Such differences within the street were less apparent at Korte Altaarstraat. Apart from a small
part of the street at the eastern end, BC concentrations were quite uniform for the entire street
for a given period of the day. The increased concentration at the junction with Wolfstraat may be
due to the higher concentration of the latter street where traffic intensity is higher and buses pass
regularly.

The different goals for data collection in EveryAware are: (1) event-based monitoring, (2) mapping
and (3) personal exposure monitoring (see Section 2.1.2). The BC data set under investigation
was used to assess the data coverage in relation to the different data collection goals.

→ Event-based measurements. Event-based monitoring aims to measure the air quality during
a certain event. Event-based monitoring generally requires a targeted data collection. The cur-
rently described measurement campaign did not envisage to monitor specific events. One event,
however, could be analysed based on these data.

A power generator was placed on a parking space next to the biking lane. The BC measurements
clearly reflected this event by highly increased BC concentrations near that location (Fig. 2.12). The
systematic way of data collection allowed to identify the start of this event (8 am). The duration of
the event, however, could not be assessed because of an incomplete data coverage in time. The
generator was still operational when the last air quality measurements at that location were made.

→Mapping of urban air quality. One of the goals of EveryAware is to use air quality measurements
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Figure 2.12: Vizualisation of an event: peak in UFP concentration (up to the sensor detection limit
of 500000 particles per cc).

to map the air quality of an (urban) area. A school is located on the measurement route at Plantin &
Moretuslei. The mobile data were used to quantify air quality during the morning rush (8 – 9 am) in
the vicinity of the school entrance. The data coverage requirements for this type of monitoring are
straightforward: the spatial coverage is very localized at the school location (fixed point location,
or a few points near the school), the temporal coverage should encompass the period between 8
and 9 am. However, the question remains whether the spatio-temporal data coverage on one day
is representative for “an average” school day. An average BC concentration of 6000 ng/m3 was
measured during the campaign. Nevertheless, BC concentrations were much higher on several
days (e.g. Monday 13/02) and significantly lower on other days (e.g. Wednesday 15/02). This
example clearly illustrates the need for repeated measurement to generalize recurring events in
time.

13/02 Mo 14/02 Tu 15/02 We 20/02 Mo 21/02 Tu 22/02 We 29/02 We 01/03 Th 02/03 Fr 06/03 Tu 08/03 Th
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Figure 2.13: Barplot of the BC concentration measured at a school between 8 and 9 am.

→ Personal exposure monitoring. Exposure monitoring involves the measurement of air pollution
concentrations where a person is exposed to during an activity. The primary purpose of exposure
studies is to link air pollution to health effects. In the EveryAware project, however, the focus is on
tracking the exposure to pollution, yet without the connection with personal health. The exposure
to air pollution is analysed based on high resolution measurements that are made during the

2012 c© Copyright lies with the respective authors and their institutions
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activity/period of interest. Two methods are feasible within EveryAware to reach this goal: (1) a
volunteer is equipped with the SensorBox and measures her/his exposure directly, or (2) exposure
profiles are computed from high resolution air quality maps which are representative for the route
and time of exposure (indirect exposure monitoring). An example of the direct exposure monitoring
is given in Fig. 2.14. For direct exposure monitoring the data covers the entire activity pattern, both
in space and time. Different transportation modi may be included (pedestrian, bicycle, car, etc.) as
well. The indirect exposure monitoring does not allow to include different transport modi.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
08:48

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 08:46

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

08:52

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

08:56

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
08:33

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
08:32

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 08:28

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 09:04

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 09:03

< 3000 ng/m³

< 5000 ng/m³

< 7000 ng/m³

< 10000 ng/m³

< 15000 ng/m³

> 15000 ng/m³

Figure 2.14: Personal exposure to BC along a commuting route (commuting by bicycle).

2.2.5 Pilot case study in Antwerp

During the EveryAware partner meeting in Antwerp (July 9–10, 2012), a test case was set up for
air quality and noise measurements in the city center of Antwerp. The test case was deployed on
Tuesday July 10th and ran from 10 am until 12:30 pm. A total of 22 people participated in this
pilot case, divided over three groups. Each group had one SensorBox at their disposal, and one
micro-aethalometer for black carbon concentration measurements for air quality measurements.
Air quality measurements were continuously made at a one second time resolution from the start
until the end of the test case. Noise measurements were made using smartphones with the Wide-
Noise application. Each group had at least 5 smartphones at their disposal. In table 2.2 the test
case in Antwerp is summarised.

Each of the three groups received a streetmap with highlighted streets where their focus of mea-
surements should lay. Measurements were made while walking along these predefined routes in
a targeted mobile data collection scheme. An overview of the monitoring routes covered by the
three teams is given in Fig. 2.15(a), from which the spatial coverage was visually assessed as
quite dense within a 1.2 km by 1.2 km wide area in the city center. Fig. 2.15(b) and (c) show
the paths recorded by the GPSs connected with the micro-aethalometers and the one recorded
with the EveryAware SensorBoxes respectively. The summary of the data coverage is given in
Table 2.2.
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Table 2.2: Summary of Antwerp cases study.
Group 1 Group 2 Group 3

Parameters noise, AQ* noise, AQ noise, AQ
Number of meas. 7170 7460 7162
Number of participants 7 7 8
Measurement period

from 2012-07-10 10:00 2012-07-10 10:00 2012-07-10 10:00
until 2012-07-10 12:30 2012-07-10 12:30 2012-07-10 12:30

Spatial extent
area 1 by 1 km 1 by 1 km 1 by 1 km
path length (approx.) 3.5 km 4.6 km 3.5 km

Number of streets 9 12 9

Most important streets

Koningin Astridplein, Pelikaanstr.,
Lange Kievitstr., Q. Matsijsstr.,
Quellinstr., Frankrijklei, Van Er-
bornstr., F. Rooseveltpl., De Keyz-
erlei

Koningin Astridplein, Pelikaanstr.,
Simonsstr., P&Mlei, Van Ey-
cklei, Stadspark, Rubenslei,
Louiza-Marialei, Frankrijklei,
Maria-Theresialei, Quellinstr., De
Keyzerlei

Koningin Astridplein, Gemaan-
testraat, F. Rooseveltplaats, Van
Ertbornstraat, Frankrijklei, Maria-
Theresialei, Quentin Matsijslei,
Lange Kievitstraat, Pelikaanstraat

* air quality

Although the entire case study was spread over two hours time temporal coverage of each location
is quite low as the volunteers only passed by once or twice. Even when aggregating to street level
most data only relate to one or two passages of a few minutes.

(a) (b) (c)

Figure 2.15: (a) Area covered by the three groups during the Antwerp case study. (b) Path recorded
by the GPSs connected with the black carbon monitor. (c) Path recorded by the GPSs present in
the EveryAware SensorBoxes.

The maps in Fig. 2.16 are generated using the Kernel DM + V algorithm [Lilienthal et al., 2009],
which is a statistical approach to model pollutant distributions. The model is presented in term of
four grid maps. The first is a heat map (in [Lilienthal et al., 2009] called a weight map) which de-
pends on the number of measurements per grid location weighted with a Gaussian kernel function.
From the heat map a confidence measure for the estimate is calculated at each location. A high
value means that the estimate is based on a large number of readings recorded close to the loca-
tion. A low value, on the other hand, means that few readings nearby the location are available. A
third map displays the mean concentration estimate of the target pollutant for grid cells where the
confidence is high. A fourth map represents the predictive variance per grid cell, estimating thus
the variability of gas readings at each location. The top row refers to the data recorded with the
micro-aethalometers. The bottom row refers to the data collected using the EveryAware Sensor-
Box. The blue color refers to low quantities, red color to high quantities and white represents grid
cells not covered by the measurements.

From Panels Fig. 2.16(a)-(e), spots with higher data coverage are observed. The top right spot
is the starting and ending point for all the groups, where a high number of readings are collected.
The other spots refer to locations were one of the groups stopped (for example at traffic light). The
difference in structure between the two panels is worth noticing. This is due to different noise in
the GPS data. The heat map does not take into account temporal differences. It is not clear if
the underlying data all relate to one passage at one specific moment or two passages with e.g.
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one hour difference in between them. Panels (b) and (f) show the confidence maps where high
confidence (red colour) is given to grid cells for which a large number of readings were recorded in
their proximity.

Panels (c) and (g) show the mean concentration maps. Some areas are clearly highlighted. The
area on the top centre is a major bus station (Franklin Rooseveltplaats) and confirms the elevated
concentrations found in another case study (see Fig. 2.10). Other highlighted spots are more
difficult to explain. In general the top left area seems to have higher pollution levels than the right
and bottom area. This can be related to the major traffic axes in the former area. Differences
between the BC and gas concentration maps are observed. This is mainly due to the fact that
the gas sensors in the SensorBox have not been calibrated against the micro-aethalometers yet.
Panels (d) and (e) finally show the variance map. The highest variability is observed at locations
where the mean concentrations were the highest. The high dynamics of traffic related pollutants
at these locations result in the higher variance here.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.16: Maps computed using the Kernel DM +V algorithm [Lilienthal et al., 2009]. Top row
refers to the data recorded with the black carbon monitor. Bottom row refers to the data recorded
with the EveryAware SensorBox.(a) and (e) heat maps. (b) and (f) confidence maps. (c) and (g)
Mean concentration maps. (d) and (e) variance maps.

This experiment shows that three (groups of) volunteers managed to cover the major roads in a
spatially confined area in Antwerp in two hours time. Temporal coverage of the data set is however
very limited; in most streets only the teams only passed by once or twice. The resulting map might
give some indications on locations with higher and lower air pollution, but this picture is prone to a
lot of error and co-incidence. As illustrated in the cases studies above, to draw broader conclusions
on air quality in this area such an experiment would have to be repeated on several times in the
day and on several days of the week.
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2.2.6 Conclusions for set-up of case studies: air quality

Proper data coverage is crucial to make sense of the collected data. Data coverage should be in
line with the goals of the measurements and with the spatio-temporal variability of the underlying
physical reality. Needed efforts depend further on the type of data collection scheme, and should
be in line with the available efforts of volunteers. To have meaningful results the EveryAware case
studies should take this into account. The case studies for air quality in EveryAware will show a
high similarity with the monitoring campaigns described above. Therefore, several conclusion can
be drawn from these experiments to assist the air quality sensor deployment in the case studies
with respect to data coverage and data collection schemes.

1. Urban air quality is highly variable in space and time. Repeated measurements are crucial
to get a representative figure of the air quality. Mobile collection of data is the most suitable
data collection method to obtain repeated measurements, covering a much larger area than
would be obtained by stationary measurements with the same number of SensorBoxes. Sin-
gle mobile measurement tracks merely give a snap shot. Repeated mobile measurements
reveal the high spatio-temporal variability of traffic-related pollution in urban areas and allow
to derive representative patterns from the data.

2. It is possible to draw pollution maps or characterise events using mobile measurements,
while taking into account spatio-temporal variation. To draw broad scale pollution maps
street level aggregation is a first useful and in many cases sufficient step. This levels out
part of the variability that is related to traffic discontinuity and short-term incidents, but might
underestimate intra-street variability. In such case more detailed analysis of the data might
reveal the need to divide streets in homogeneous street sections. The impact on air quality
of a very local event, both in space and in time, may be characterized by a limited set of
measurements. Spatial and temporal aggregation might in that cases allow for much more
detail. Recurrent events can only be characterised by repeated measurements as the impact
of the event might strongly depend on e.g. meteorological conditions.

3. A data collection scheme with a person taking the same route on different moments of the
day repeated 20 times on different moments of the days in a three weeks period will be suf-
ficient to reveal the major daytime hot spots on this route, and relative differences between
different street sections on the route, i.e. when the underlying diurnal traffic patterns are sim-
ilar for the streets. Increasing data by increasing the number of runs will allow to aggregate
the data at a more detailed level, i.e. distinguishing non-homogeneous street sections and
intersections, and aggregating data in relevant time intervals, e.g. hourly averages, peak
and off-peak hours. Street characteristics such as traffic dynamics and street architecture
and configuration, have a large effect on the data coverage requirements. Streets with low
or smooth traffic require much less measurements than busy routes with varying periods of
congestion.

4. Statistical power will increase when all runs are carried out at more or less the same time,
e.g. a commuter taking the same road to work every day. On the other hand the data might
not be representative for other periods of the day. In the case of the commuter it will only
possible to draw conclusions on the road taken.

5. Whereas the data can be put in a comparative perspective (e.g. comparing different loca-
tions), it is far more challenging to conclude on actual average concentration levels during
the measurement period, and, because of clear seasonal effects, even more to extrapolate
these average levels to other periods. To do so measurements would have to be repeated
in different seasons.
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6. Three volunteers can cover the major roads in a spatially confined area of 1 to 2 km2 in a
busy city centre in two hours time. Whereas this might already give indications of hot spot
areas or broad patterns of air pollution, the results from such an exercise are prone to a
lot of error and co-incidence. This experiment would have to be repeated according to the
guidelines set out above to be able to draw conclusions.

7. Taking into account the large data needs to get a representative picture of urban air quality
and the fact that, both because of its cost and its technical complexity, the SensorBoxes will
be distributed to a rather limited group of people (as opposed to the Widenoise app), data
collection should focus on a clearly defined time frame and area in order to obtain sufficiently
repeated air quality measurements (e.g. air quality in the streets around a school , exposure
of cyclists to air pollution on a major access route to the city during traffic peak hours). This
calls for a targeted data collection approach. Broad scale city-wide mapping exercises
require opportunistic approaches with a measurement device that measures continuously
with minimal intervention of the user. This is not the case at this moment for the EveryAware
SensorBox.
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2.3 Noise monitoring

2.3.1 Introduction

Noise is a term that people use to refer to sounds that are somehow unwanted. The labelling of
particular sounds as noise, and thereby as unwanted, may be influenced as much, and sometimes
more, by personal opinion and contextual and cultural factors1, than by physically measurable
properties of the sound in question [Stevens, 2012, Chapter 4]. Despite being a subjective topic
there is ample scientific evidence that noise is an increasingly pressing problem around the world,
especially in urban areas. Long-term, excessive exposure is known to have negative effects on
human health, well-being and productivity [European Commission, 2011; WHO Regional Office
for Europe / European Commission Joint Research Centre, 2011]. Hence the notion that noise is
an environmental pollutant and a health hazard, rather than just a nuisance, has become widely
accepted in recent decades [Goines and Hagler, 2007].

Generally speaking, noise can be problematic where and whenever the produced sound level,
the number of sources, the spatio-temporal scale of exposure, the number of exposed individuals
and/or the objectively or subjectively observed harm is deemed too high. Typically a distinction is
drawn between two categories of noise (problems): occupational noise and environmental noise.
Occupational noise is the noise people are confronted with in the context of their job. Within the
context of the EveryAware project we focus exclusively on the problem of environmental noise.
Environmental noise is the noise people are exposed to in their daily lives as a result of various
human activities, such as those related to transport, industry and leisure2. Figure 2.17 shows a
powerful example of environmental noise, in this case caused by transport activity.

Figure 2.17: Environmental noise illustration: a Boeing 747-400 flying low over residential housing
while approaching London Heathrow Airport, England, UK.

1After all one person’s music is another person’s noise.
2Note that often the same activity can be seen as both a source of occupational noise (i.e. for those who are exposed

in their professional capacity) and environmental noise (i.e. for all other exposed people).
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2.3.2 Spatial and temporal variability of urban noise

The acoustic properties of urban soundscapes3 are highly dynamic in both space and time.

Similarly to air quality, environmental noise is influenced by urban topography and topology (e.g.
buildings and other objects can reflect sound waves), surface types and vegetation, as well as by
atmospheric conditions (e.g. wind speed and direction).

What differentiates noise from air pollutants is the temporal and spatial reach. Whereas air pollu-
tants can stay in the atmosphere for very long periods after being emitted, noise dies out almost
instantaneously after the source stops producing it. Whereas some types of air pollutants can
cause degraded air quality hundreds of kilometres away from their source, the effects of envi-
ronmental noise are typically limited to a few kilometres around the source. Another noteworthy
difference is the importance of human factors. Whereas many (potentially) harmful air pollutants
cannot be smelled or seen, noises need to be audible in order to be harmful, and whether they are
(or are perceived as such) is influenced by many factors, including non-acoustic ones.

Before we discuss how urban noise can be monitored or otherwise assessed we should clarify what
exactly is being measured and what that means. We also touch upon the regulatory framework.

What to measure

When assessing environmental noise the primary (and usually the only) acoustic parameter that is
taken into consideration is sound (pressure) level, which is expressed in decibels (dB).

It is important to differentiate between sound level and loudness: the former is a physical prop-
erty of sound that can be directly measured, whereas the latter is a psychological term referring
to the attribute of auditory sensation in terms of which sounds can be ordered on a scale ex-
tending from "quiet" to "loud". Although sound level is the main factor that influences loudness
it is not the only one. Another factor is sound frequency, because human hearing is not equally
sensitive at all frequencies4. For this reason sound level measurements are typically adjusted
based on the frequency distribution of the sound in a process is called frequency weighting. For
the assessment of environmental noise the de facto weighting to use is A-weighting [International
Electrotechnical Commission, 2002; International Organization for Standardization, 2003, 2007], in
which case measurements are expressed in dB(A). However psychoacoustic research has shown
that, besides sound level and frequency, loudness perception is also influenced by other acous-
tic and non-acoustic (subjective/contextual) factors. Moreover, the relation between loudness and
annoyance, and any physical or mental harm, is very complex as well [Florentine et al., 2011].

The message here is that although measuring – or predicting (see below) – (A-weighted) sound
level is the de facto approach to assess environmental noise, this type of data is limited at best
when it comes to capturing or explaining the subtleties of sound perception (loudness, annoyance,
etc.) and to estimate physical and mental harm caused.

Regulatory framework & official assessment efforts

Recommendations or regulations aimed at limiting noise exposure are typically specified as A-
weighted sound level averaged over multiple hours. For instance, the World Health Organisation
(WHO) recommends that the average A-weighted sound level (denoted as LAeq) over the 16 hour
day and evening period should not exceed 55 dB(A) outdoors, and 50 dB(A) inside dwellings. To
avoid sleep disturbance the WHO advises that nightly averages should stay below 40 dB(A) out-
side, and below 30 dB(A) inside bedrooms [WHO, 1999; WHO Regional Office for Europe, 2009].

3The term soundscape was coined by [Schafer, 1969] as the auditory equivalent of a landscape – i.e. the whole of
sounds and noises that is characteristic for a certain place and/or time.

4I.e. sounds with the same level but different frequencies can be perceived to have different loudness.
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Due to recommendations such as those made by the WHO, the regulatory framework concerned
with the assessment of environmental noise usually takes a long-term perspective. For exam-
ple, Directive 2002/49/EC, better known as the Environmental Noise Directive (END), obliges EU
member states to produce so-called strategic noise maps for major cities [European Parliament
and Council, 2002]. Separate maps must be produced for different sources of noise, namely road,
rail and air traffic and industry. For every source 2 maps must be produced one representing Lden

(a weighted average of LAeq taken over 24 hours, with a bias for evening and night time noise) and
the other Lnight (LAeq taken over 8 night hours). These maps are valid for 5 years and represent
the average sound level one can expect for a limited number of environmental noise sources on an
average day in the year of study. Hence, they do not cover individual, incidental, local or short-term
events (e.g. roadworks, sirens, noisy neighbours, etc.).

In the European Union, large-scale assessments of urban noise conducted by officials typically
involve few field measurements and instead rely on simulation models5. The main reason is scala-
bility: it is infeasible to measure the sound level at all places and times. To predict levels at different
places and times they use specialised software which employs source-specific sound propagation
models that are fed with statistics about the presence of considered sources (e.g. average number
of vehicles on roads, frequency of planes on low-altitude flight paths, etc.) and information on
urban topology (e.g. height of buildings, surface type of roads, presence of noise barriers, etc.).

Alongside the production of simulation-based noise maps some local authorities also operate a
network of sensors which allow them to measure (rather than predict) the sound level at a limited
number of places over extended periods of time. Examples of such networks can be found in the
cities of Brussels and Paris, as wells as around some major airports. However, due the high cost
of the equipment used, this approach has limited scalability.

Finally environmental agencies (or their subcontractors) sometimes conduct small-scale, short-
term acoustic studies at specific places. Such efforts may be aimed at assessing a local problem,
possibly in response to complaints by citizens. Alternatively the goal may be to collect data to
initialise or validate modelling efforts. Fieldwork and analysis are carried out by professionals
using specialised (i.e. expensive) equipment and software. As with sensor networks this approach
has limited scalability: authorities simply do not have the means to let their personnel carry out
measurements everywhere and all the time.

An opportunity for crowd-sourcing

As demonstrated in earlier work, citizen science [Ellul et al., 2011; Francis et al., 2008] and mobile
sensing [D’Hondt et al., 2011; Stevens, 2012] present an opportunity to complement the efforts
of officials with urban noise data collected by citizens. This approach allows the assessment of
urban noise using measurements rather than predictions and is cheaper than setting up dedicated
sensor networks or employing professionals to do fieldwork. Although the tools (i.e. cheap sound
level meters or mobile phones) cannot offer the same level of accuracy this problem can be offset
through calibration and by aggregating and averaging larger sets of measurements over space and
time [Stevens, 2012, Chapter 7]. Crowd-sourcing also allows to capture of more than just sound
level: through social tagging and perception ratings citizens can build a richer representation of the
urban soundscape, perhaps providing a better understanding of the more intangible human factors
that, as noted above, play an important component in noise.

As with air quality monitoring, the spatial and temporal coverage that is achievable when monitoring
urban noise via crowd-sourcing depends on the goal, the number and commitment of contributors
and whether (and how) the work is coordinated. In principle, event-based measurement, local

5The END is clearly written with this approach in mind. For instance, the requirement to make separate maps per
sound source is difficult to fulfil with measuring since sound level meters cannot differentiate between sources.
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area6 mapping and personal exposure monitoring are all possible, but may fail if the resources (in
terms of human effort and organisation) fall short.

[Stevens, 2012] argues that small to medium-scale data collection campaigns, conducted by peo-
ple that know and trust each other, and involving a targeted data collection scheme or protocol
(aimed at answering specific questions and aligned with local concerns) – called group sensing
initiatives – are more feasible and effective than large-scale campaigns involving hundreds of indi-
viduals who are mostly strangers to one-another and who operate without coordination and may
have diverse motivations – called mass sensing initiatives.

2.3.3 EveryAware pilot cases

This section presents an overview of the data coverage of the EveryAware pilot studies for noise
measuring. All of these were carried out using the WideNoise App for Apple iOS or Android
devices. It is important to note here that, unlike with the early air quality coverage assessment
described earlier in this document, which made use of a diverse range of sensors whilst the Ev-
eryAware SensorBox itself was being constructed, it was possible to conduct these studies with
the WideNoise App itself. Thus rather than providing a theoretical ’best’ answer to the data cov-
erage issue, these studies permit preliminary investigations into what is possible to achieve using
crowd-sourced approaches and tools (the WideNoise App) that pre-date the EveryAware project.

Overall Worldwide WideNoise measurements

The currently collected noise measurement data (from the launch of the App until the 23th August
2012) is summarized in Table 2.3. There are nearly 25,000 measurements taken so far. Not every
noise measurement was associated with geo-coordinates. As the cell phone does not always have
access to a location provider, a significant number of samples have been captured without specific
coordinate information as can be seen from the table. Using the ip address at least estimates
can be made on the user’s location leaving only a small amount of measurements without geo-
coordinates. Such measurements could also be associated with a set of tags. Tags can be added
by the user after the noise measurement has been taken.

Each measurement spans five seconds. It can be extended to ten or 15 seconds by the user
while the measurement is taken. The coverage section of the table shows the time covered by the
measurements. They cover nearly 42 hours. For the distribution of durations please refer to Figure
2.18(b).

The table also covers statistics concerning WideNoise ids addressing questions similar to the
single measurement statistics: How many users tag? Which smartphone brands are used?

Finally, the table aggregates the measurements and presents certain statistics on the average deci-
bel (dB) values of the measurements. The average decibel values are calculated by the WideNoise
cellphone application and need to be handled with care (See D1.1 for details).

Figure 2.18 shows several of the statistics from Table 2.3 as pie charts. Figure 2.18(a) shows the
relative amounts of measurements with and without geo-coordinates. Figure 2.18(b) shows the
relative amounts of measurement durations. Figure 2.18(c) shows the relative amounts of mea-
surements with attached tags, with attached Twitter timelines, with none of those two attachments
and with both. Figure 2.18(d) shows the same as Figure 2.18(c) restricting samples to those with
geo-coordinates. Finally, Figures 2.18(e) and 2.18(f) show the relative amount of measurements
made by Apple products against the measurements made by Android products once with and
once without geo-coordinates. In general, the majority of the measurements were made by Apple
products over a 5 seconds interval. The majority of the data had geo-coordinates but no tag or
perception annotation.

6Typically a few streets or a small neighbourhood, rather than a large city.
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Data
Location worldwide
From 2011-12-08 17:14:58 CEST
Until 2012-08-23 11:00:32 CEST

Measurements
Number of measurements 24886
Number of measurements with geo-coordinates 17011
Number of Measurements with geo-coordinates from ip 7627
Number of measurements with tags 3647
Number of measurements with perceptions 8015
Number of WideNoise ids from Apple products 19105
- with geo-coordinates 11578
Number of WideNoise ids from Android products 5781
- with geo-coordinates 5433

Coverage
Overall duration of measurements 41:31:25

WideNoise Ids
Number of WideNoise ids 8346
Number of WideNoise ids with geo-coordinates 4353
Number of WideNoise ids with geo-coordinates from ip 4480
Number of WideNoise ids with tags 284
Number of measurements with perceptions 2202
Number of WideNoise ids from Apple products 7972
- with geo-coordinates 4026
Number of WideNoise ids from Android products 375
- with geo-coordinates 328

Decibel Statistics
Average 63.94
Standard deviation 19.27
Minimum 0
Maximum 119.89

Table 2.3: Worldwide WideNoise Summary.

2012 c© Copyright lies with the respective authors and their institutions
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Geo−Coordinates (68%)

No Geo−Coordinates (32%)

(a) Measurements with and without geo-
coordinates for worldwide data.

5 (88%)

10 (4%)

15 (8%)

(b) Measurement durations for worldwide data.

Only Tags (4%)

Only perceptions (21%)
Both (11%)

None (64%)

(c) Measurements with either tags, a percep-
tions, none, or both for worldwide data.

Only Tags (5%)

Only perceptions (25%)

Both (15%)

None (54%)

(d) Measurements inlcuding geo-coordinates
with either tags, perceptions, none, or both for
worldwide data.

Apple (77%)

Android (23%)

(e) Measurements from Apple and Android prod-
ucts for worldwide data.

Apple (68%)

Android (32%)

(f) Measurements from Apple and Android prod-
ucts with geo-coordinates for worldwide data.

Figure 2.18: Pie charts summarizing several statistics for worldwide noise measurements.
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(b) Measurements per user smoothed by sum-
ming up the frequencies per user.

Figure 2.19: Measurements per user for worldwide data.
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Figure 2.20: Noise Histogram for worldwide data.

To illustrate how user activity is distributed, Figure 2.19 shows two log-log plots of the users sorted
by frequency descending on the x-axis. For Figure 2.19(a) the number of measurements for each
user is directly plotted to the y-axis. For Figure 2.19(b) the frequencies for the user as well as all
preceding users frequencies are summed up. Both figures show that only a small amount of users
contribute many measurements while a large amount of users will only take very few samples.

Figure 2.20 provides a histogram with 10 dB sized bins summarizing the overall distribution of
decibel values. Note how the main body of measurements provides average dB values between
60 and 70 dB.

A list of top ten tags by count as well as their average geo-coordinates are listed in Table 2.4.

The smartphone application also asks the user to add perceptions to their measurements. Those
are summarized in Table 2.5. A perception value always ranges from 0 to 1, with 0.5 as the default
value. A perception is specified by two words. If the perception value is closer to 0 the first word
is weighted more. If the value is closer to 1, the second word is weighted more. Thus, if the user
does not change the perception values a value of 0.5 will be submitted. The table accounts for this
by giving an overall average as well as an average excluding the default values.

Finally figures 2.21 and 2.22 show snapshots of the WideNoise map as available on the case study
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Tag Count Average Longitude Average Latitude

garden 558 -0.25 51.46
heathrow 342 -0.65 51.38
aeroplane noise 319 -0.67 51.38
Antwerpen 249 4.42 51.21
car 215 4.90 50.07
street 146 6.01 48.44
plane 142 -0.30 51.47
station 138 4.39 51.14
traffic 135 3.36 50.34
office 103 8.32 49.04

Table 2.4: Top ten tags by count for worldwide data.

Perception Overall Average Amount (non 0.5) Average (excluding 0.5)

Love / Hate 0.53 5353 0.66
Calm / Hectic 0.53 5359 0.62
Alone / Social 0.50 5316 0.48
Nature / Man-Made 0.59 7019 0.83

Table 2.5: Perceptions for worldwide data.

homepage7. The map summarizes the measurements by depicting clusters as in Figure 2.21 or
by sorting measurements into a grid as in Figure 2.22. The colors correspond to decibel value
intervals as follows:

• below 40 dB: blue

• above 40 dB: green

• above 60 dB: yellow

• above 70 dB: light orange

• above 80 dB: orange

• above 90 dB: red

• above 100 dB: purple

Beta Test 1 - London Citizen Cyber Science Workshop

The aim of the beta test on noise monitoring was to test recruitment methods as well as to re-
ceive informal feedback on the usability of the WideNoise application. The beta test was held at
the London Citizen Science Summit in February 2012. The beta test was aiming to recruit the
conference delegates by asking them to download the WideNoise application and use it to carry
out noise mapping around the conference facilities. The summit lasted for 3 days, on the first day
133 readings were created by the delegates, on the 2nd 157 recordings were made, and on the
final day a further 165 readings were created. Out of the total 41 measurements had at least one
tag and 157 measurements had associated perception ratings. The average of decibel level for
these readings at the beta test was 60.8 dB. More information about the beta test can be found in
deliverables 3.1 and 6.3.

7http://cs.everyaware.eu/event/widenoise/map
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Figure 2.21: WideNoise map showing clusters.

Figure 2.22: WideNoise map showing grid.
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Figure 2.23: Heatmap of the noise measurements conducted in the pilot case in Rome.

Additional Coverage Tests - Rome

The noise measurement data from a case study in Rome is summarized in Table 2.6. The case
study focuses on the 9th of June, 2012 and on a square area in Rome roughly covering 0.66 km2.
There were close to 700 measurements taken in merely eleven hours. Because we focus on a
particular area, there are no samples without geo-coordinates. None of the geo-coordinates was
inferred by ip. There where not many tagging and perception annotations. A heat map showing
the density of the measurements is shown in Fig. 2.23.

Each measurement spans five to fifteen seconds as mentioned in Section 2.3.3. The measure-
ments were able to cover a time of one hour, three minutes and five seconds. Most users did not
take advantage of extending the sample though (see Fig. 2.24(a)). Assuming a radius of 10m the
measurements cover around 0.11 km2 which amount to about 13.75 % of the area.

The table also covers statistics concerning WideNoise ids. There was a relatively small number of
users. Nearly all of them added perceptions but only half of them used the tagging feature. The
smartphone OS brand usage was equally distributed.

Finally, the table aggregates the measurements and presents certain statistics on the average
decibel (dB) values of the measurements (see Section 2.3.3). Comparing with Table 2.3 the av-
erage is a little higher and the standard deviation lower. This can be explained by the fact that
measurements are taken in a city (as compared to everywhere) and concentrated on a relatively
small area.

Fig. 2.24 shows several of the statistics from Table 2.6 as pie charts. Fig. 2.24(a) shows the relative
amounts of measurement durations. Fig. 2.24(b) shows the relative amounts of measurements
with attached tags, with perceptions, with none of those two attachments and with both. Finally,
Fig. 2.24(c) shows the relative amount of measurements made by Apple products against the
measurements made by Android products. Note how the distribution greatly differs from the overall
distribution from 2.18(e).

To illustrate how user activity is distributed, Fig. 2.25 shows two log-log plots of the users sorted
by frequency descending on the x-axis. For Fig. 2.25(a) the number of measurements for each
user is directly plotted to the y-axis. For Fig. 2.25(b) the frequencies for the user as well as all
preceding users frequencies are summed up. Fig. 2.26 provides a histogram with 10 dB sized bins
summarizing the overall distribution of decibel values. Compared to Fig. 2.20 the bins in the lower
dB intervals are smaller relative to the bins in the 60 dB area. Just like the higher average dB value
this indicates that cities are louder than when considering the overall dB distribution.

A list of top ten tags by count are shown in Table 2.7. As in Table 2.5 the perceptions for Rome are
listed in Table 2.8.

Finally figure 2.27 shows snapshots of the WideNoise map as available on the case study home-
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Data
Location Rome
From 2012-06-09 09:34:25 CEST
Until 2012-06-09 20:57:37 CEST
Minimum Longitude 12.5108470
Minimum Latitude 41.8912730
Maximum Longitude 12.5190240
Maximum Latitude 41.9023060
Area 0.8 km2

Measurements
Number of Measurements 676
Number of Measurements with geo-coordinates from ip 0
Number of Measurements with tags 77
Number of Measurements with perceptions 180
Number of Measurements from Android products 444
Number of Measurements from Apple products 232
Area 0.66 km2

Coverage
Overall duration of measurements 1:3:5
Area coverage (radius 10m) 0.09 km2

Area coverage (radius 10m) 14.12 %

WideNoise Ids
Number of WideNoise ids 15.00
Number of WideNoise ids with geo-coordinates from ip 0.00
Number of WideNoise ids with tags 8.00
Number of WideNoise ids with perceptions 13.00
Number of WideNoise ids from Android products 8.00
Number of WideNoise ids from Apple products 7.00

Decibel Statistics
Average 68.82
StD 7.15
Minimum 42.29
Maximum 92.08

Table 2.6: Rome WideNoise Summary.

Tag Count

outdoor 34
street 27
car 21
voice 13
indoor 12
wind 6
birds 5
bookstore 5
music 4
quiet 4

Table 2.7: Top ten tags by count for the Rome data.

Perception Overall Average Amount (non 0.5) Average (excluding 0.5)

Love / Hate 0.53 129 0.53
Calm / Hectic 0.53 71 0.48
Alone / Social 0.50 104 0.67
Nature / Man-Made 0.59 166 0.69

Table 2.8: Perceptions for the Rome data.

2012 c© Copyright lies with the respective authors and their institutions



Page 42 of 68 EveryAware: Enhance Environmental Awareness through Social Information Technologies

5 (92%)

10 (4%)

15 (4%)

(a) Measurement durations for the Rome data.

Only Tags (4%)

Only perceptions (19%)

Both (7%)

None (69%)

(b) Measurements with either tags, a perceptions, none, or
both for the Rome data.

Apple (66%)

Android (34%)

(c) Measurements from Apple and Android products for the
Rome data.

Figure 2.24: Pie charts summarizing several statistics for worldwide noise measurements.
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(a) Measurements per user using a log-log plot.
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(b) Measurements per user smoothed by sum-
ming up the frequencies per user.

Figure 2.25: Measurements per user for the Rome data.
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Figure 2.26: Noise Histogram for the Rome data.

2012 c© Copyright lies with the respective authors and their institutions



Page 44 of 68 EveryAware: Enhance Environmental Awareness through Social Information Technologies

Figure 2.27: WideNoise map showing clusters for the Rome data.

page 8. The map summarizes the measurements by depicting clusters. For details on the colors
coding see Section 2.3.3.

Additional Coverage Tests - Antwerp (July 10th, 2012)

The noise measurement data from a case study in Antwerp is summarized in Table 2.9. The
summary is similar to the one in Section 2.3.3.

The case study focuses on the 10th of July, 2012 between 9:30 and 13:00 o’clock and covers a
square area in Antwerp roughly covering 2.6 km2. There were close to 1200 measurements taken
in merely three and a half hours. Because we focus on a particular area, there are no samples
without geo-coordinates. None of the geo-coordinates was inferred by ip. There where not many
tagging and perception annotations.

Each measurement spans five to fifteen seconds as mentioned in Section 2.3.3. The measure-
ments were able to cover a time of one hour, 38 minutes and 55 seconds. Most users did not take
advantage of extending the sample though (see Figure 2.28(a)). Assuming a radius of 10 m the
measurements cover around 0.2 km2 which amount to about 7.45 % of the area.

8http://cs.everyaware.eu/event/widenoise/map
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Data
Location Antwerp
From 2012-07-10 09:49:21 CEST
Until 2012-07-10 12:38:06 CEST
Minimum Longitude 4.403
Minimum Latitude 51.204
Maximum Longitude 4.424
Maximum Latitude 51.221
Area 2.6 km2

Measurements
Number of Measurements 1160
Number of Measurements with geo-coordinates from ip 0
Number of Measurements with tags 115
Number of Measurements with perceptions 138
Number of Measurements from Android products 245
Number of Measurements from Apple products 915

Coverage
Overall duration of measurements 1:38:55
Area coverage (radius 10m) 0.20 km2

Area coverage (radius 10m) 7.45 %

WideNoise Ids
Number of WideNoise ids 11
Number of WideNoise ids with geo-coordinates from ip 0
Number of WideNoise ids with tags 10
Number of WideNoise ids with perceptions 11
Number of WideNoise ids from Android products 5
Number of WideNoise ids from Apple products 6

Decibel Statistics
Average 66.36
StD 10.03
Minimum 25.61
Maximum 94.30

Table 2.9: Worldwide WideNoise Summary.

The table also covers statistics concerning WideNoise ids. There were not many users but nearly
all of them tagged and added perceptions. Finally, the table aggregates the measurements and
presents certain statistics on the average decibel (dB) values of the measurements (see Section
2.3.3). Comparing with Table 2.3 and already observed in Figure 2.6 the average is slightly higher
and the standard deviation is lower. Again this can be explained by the fact that measurements
are taken in a city (as compared to everywhere) and concentrated on a relatively small area.

Figure 2.28 shows several of the statistics from Table 2.9 as pie charts. Figure 2.28(a) shows the
relative amounts of measurement durations. Figure 2.28(b) shows the relative amounts of mea-
surements with attached tags, with perceptions, with none of those two attachments and with both.
The possibility to extend durations as well as the perception dialog was not used as often as in the
overall distribution. This can be explained by the fact that the users had to make many measure-
ments in a relatively small amount of time, thus, focusing on taking the noise measurement and
not on tagging or perceptions. Finally, Figure 2.28(c) shows the relative amount of measurements
made by Apple products against the measurements made by Android devices. The amount of
Android phones was rather high, hence the high number of Android measurements.

To illustrate how user activity is distributed, Figure 2.29 shows two log-log plots of the users sorted
by frequency descending on the x-axis. For Figure 2.29(a) the number of measurements for each
user is directly plotted to the y-axis. For Figure 2.29(b) the frequencies for the user as well as all
preceding users frequencies are summed up.

Figure 2.30 provides a histogram with 10 dB sized bins summarizing the overall distribution of
decibel values. Compared to Figure 2.20 the bins in the lower dB intervals are smaller relative to
the bins in the 60 dB area. Just like the higher average dB value this indicates that cities are louder
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5 (98%)
10 (1%)15 (1%)

(a) Measurement durations for the Antwerp data.

Only Tags (3%)

Only perceptions (5%)

Both (7%)

None (86%)

(b) Measurements with either tags, a perceptions, none, or
both for Antwerp data.

Apple (21%)

Android (79%)

(c) Measurements from Apple and Android products for the
Antwerp data.

Figure 2.28: Pie charts summarizing several statistics for the Antwerp noise measurements.
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(a) Measurements per user using a log-log plot.
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(b) Measurements per user smoothed by sum-
ming up the frequencies per user.

Figure 2.29: Measurements per user for the Antwerp data.
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Figure 2.30: Noise Histogram for the Antwerp data.

than when considering the overall dB distribution. Also note how the covered area shows a wider
spectrum of noise values than Rome (see Figure 2.26).

A list of top ten tags by count are shown in Table 2.7.

As in Table 2.5 the perceptions for Rome are listed in Table 2.11.

Finally figure 2.31 shows snapshots of the WideNoise map as available on the case study home-
page9. The map summarizes the measurements by depicting clusters. For details on the colors
coding see Section 2.3.3.

Large Scale Case Study - Heathrow

Given the time required to engage participants, work towards the large scale case studies forming
part of the EveryAware project has commenced, and preliminary results in terms of data coverage
are reported here. On the 19th of June, 2012, UCL started a noise monitoring campaign around
London Heathrow airport, focused on the community of Isleworth which lies under the flight path(s).
In this campaign we sought to engage local citizens to use WideNoise to measure noise in their

9http://cs.everyaware.eu/event/widenoise/map
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Tag Count

street 33
cars 23
bus 21
outdoor 18
traffic 11
train station 10
car 8
bus stop 7
construction work 7
traffic light 6

Table 2.10: Top ten tags by count for the Antwerp data.

Perception Overall Average Amount (non 0.5) Average (excluding 0.5)

Love / Hate 0.53 100 0.62
Calm / Hectic 0.53 98 0.67
Alone / Social 0.50 96 0.67
Nature / Man-Made 0.59 128 0.83

Table 2.11: Perceptions for the Antwerp data.

Figure 2.31: WideNoise map showing clusters.
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daily environment – in which many claim to suffer from excessive noise caused by the take-off and
landing operations. The purpose of this campaign, in the context of the project, was to conduct an
end-to-end test of the platform formed by WideNoise and the EveryAware back-end.

To bootstrap the campaign 9 smartphones10 were lent to community members. Other interested
citizens were urged to download and install WideNoise on their own devices. To boost recruitment
we ran an online and offline publicity campaign and successfully sought media attention [BBC
News London, 2012]. On July 24, after 4 weeks, 7 devices11 were reclaimed, the others remain
with community members. Many people also continue to use their own devices. Therefore we
consider this campaign to be an on-going effort. More details about this campaign and related
coaching efforts can be found in deliverables 3.1 and 6.1.

Rather than selecting measurements taken by specific users (or devices) we have opted to ex-
tract the Heathrow dataset from the worldwide WideNoise dataset (see 2.3.3) by means of a
spatio-temporal query. We delineated an area of 169 km2 around (and including) Heathrow air-
port. Besides Isleworth this area also covers numerous other communities that are affected by
the Heathrow flight paths. Measurements with geo-coordinates that lie within the boundaries of
this area and were taken on or after 2012-06-19 are attributed to the Heathrow campaign. Conse-
quently we are not considering measurements without geo-coordinates because we have no way
of telling whether they were taken in the area of interest12.

The currently (up to 2012-08-13) collected noise data consists of 3007 measurements submitted
by 284 different devices/users. Interestingly, however, we have only had direct contact with about
20 inhabitants of Isleworth. The other contributors were recruited through word-of-mouth and the
publicity campaign. To date, we have refrained from imposing or suggesting a systematic data
collection protocol. This is because, as this large-scale case study is formed of two groups of
participants from different villages, we therefore have the opportunity to investigate whether better
data coverage will be obtained by providing general usage guidelines (’capture noise measure-
ments outside’) which perhaps do not impact users’ daily lives and routines, or by expecting signif-
icant commitment on the part of the users and issuing more specific ’measure at this time/place’
instructions. Another reason is the difficulty of coordinating participant’s actions when the majority
of them could only be reached through one-way (and often online) communication alone.

In terms of the data collection schemes discussed in 2.1.3, many contributors seem to have fol-
lowed a stationary or semi-stationary pattern13. Often these people measured the passage of air-
planes, typically with the intention to capture the moment the plane is overhead and thus causes
the loudest noise. We know this from communications with a subset of the contributors, which are
summarised in deliverable 6.3. In terms of the data collection goals discussed in 2.1.2 this type of
usage can be seen as event-based measurement, possibly in combination with personal exposure
measurement. Even though there was little or no coordination among contributors, nor continu-
ous measurement, we consider this targeted data collection, driven by the motivation to collect
evidence on harmful aircraft noise. This usage clearly does not result in wide spatial coverage but
rather in a limited number of fairly dense clusters.

Table 2.12 summarizes the currently collected data. The coverage in space and time is given
as well as statistics about tag usage, perception ratings and the smartphone platforms that have
been used. We also list the duration (5, 10 or 15 s) of the measurements. This shows that most
users use the default duration of 5 s. But the majority of those that extend the duration do so twice
(to 15 s). Figure 2.32 illustrates some these statistics using pie charts: Figure 2.32(a) shows the
relative amounts of measurements with attached tags, perception ratings, both or none; Figure
2.32(b) shows the duration of the measurements; finally, Figure 2.32(c) shows the relative amount

108 HTC Explorers and 1 Apple iPhone 3G.
11All of them HTC Explorers, so 1 Explorer and 1 iPhone remain in the field.
12There was no point in including measurements without geo-coordinates taken by users/devices that have submitted

measurements taken around Heathrow because there were only 2 such measurements in the database.
13Albeit without continuous measurement because WideNoise does not support that.
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of measurements made by Apple products against those made by smartphones running Android.

Data
Location Around Heathrow airport
From 2012-06-19
Until 2012-08-13 (on-going)

Coverage
Area (outer bounds)14 130 km2

Area (10m radius around each sample) 0.28 km2

Time (30s before and after each sample) 52:50:16

Measurements
Number of measurements15 3007 (±96 %)
Number of measurements with tags 1097 (±36 %)
Number of measurements with perception ratings 2173 (±72 %)
Number of measurements by Apple products 1723 (±57 %)
Number of measurements by Android products 1284 (±43 %)
Durations:
◦ 5 s 1766 (±59 %)
◦ 10 s 448 (±15 %)
◦ 15 s 793 (±26 %)

WideNoise Ids (devices16)
Number of WideNoise ids 284
Number of WideNoise ids corresponding to registered users 32 (±11 %)
Number of WideNoise ids with tags 46 (±16 %)
Number of WideNoise ids with perception ratings 179 (±63 %)
Number of WideNoise ids from Apple products 214 (±75 %)
Number of WideNoise ids from Android products 71 (±25 %)

Decibel Statistics
Average 73.82
Standard deviation 10.64
Minimum 0
Maximum 102.62

Table 2.12: Summary of the on-going WideNoise campaign around Heathrow airport

Table 2.12 also covers statistics concerning WideNoise Ids addressing questions similar to the
single measurement statistics: How many users tag? How many users provide perception ratings?
Which smartphone platforms do they use? We should note that WideNoise Ids in fact represent
devices rather than users – except when the user has registered an account. In some cases
however, particularly where phones were loaned from the project, there may be instances where
an individual device has been used by more than one contributor. It is assumed that these cases
are rare and as such we consider each Id to represent an individual user.

Finally the table lists statistics on the sound pressure level (SPL) values that were measured (ex-
pressed in dB). We should note that, as discussed in deliverable 1.1, there is a significant error
margin due to fact that WideNoise cannot be calibrated to account for the microphone sensitivity of
different mobile phones. The minimum of 0 dB is an unrealistically low value which is likely caused
by a hardware or low-level software malfunction that occurred during a few measurements. In the
future it may be advisable to simply ignore measurements below±30 dB. The charts in Figure 2.33
summarize the overall distribution of decibel values measured during the campaign.

As was to be expected from related work [Stevens, 2012, p. 131–136], there are large differences
in the efforts of the contributing citizens. To illustrate this Figure 2.34 plots the number of users
that have contributed certain numbers of measurements. It is interesting to note that the 10 most
active users (±3 % of the total) are together responsible for about 60 % of the measurements.

A list of top 30 tags by count are listed in Table 2.13. Clearly the vast majority of tags are related
to air traffic to or from Heathrow airport.

14Computed as the convex hull.
15All with geo-coordinates.
16Each WideNoise Id represents a unique device, typically used by a single person.
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Tags only 
5% 
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only 
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Both 
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23% 

(a) Measurements with either tags, percep-
tion ratings, none, or both

5 s 
59% 10 s 

15% 

15 s 
26% 

(b) Measurement duration

Apple/iOS 
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Android 
43% 

(c) Smartphone platforms: iOS vs. Android

Figure 2.32: Pie charts for measurements taken during the Heathrow campaign

The WideNoise app also asks the user to rate his/her perception of the soundscape by means of 4
sliders, each representing a different aspect. Each perception value ranges from 0 to 1, 0.5 being
the neutral answer. The results are summarized in Table 2.14 and Figure 2.35. Due to the way
WideNoise is designed it is unfortunately not possible to differentiate between situations where the
user felt neutral a perception aspect, and situations where he/she did not feel like answering the
question (and thus left the slider untouched): in both cases the result is a perception value of 0.5.
However, looking at the peaks in 2.35 it is very likely that in the majority of cases 0.5 should be
interpreted as the result of the second situation – i.e. the perception rating step was essentially
skipped17. Therefore Table 2.14 lists averages with and without 0.5 answers taken into account.

Figure 2.36 shows a screenshot of the WideNoise map for the area of study18. The map sum-
marizes the measurements by clustering them. Finally Figure 2.37 shows a map in which the
measurements are aggregated and averaged in a regular grid with cells of 500 m × 500 m.

17In Table 2.12 & Figure 2.32(a) we consider measurements with 0.5 on all 4 aspects to be lacking perception ratings.
18The dynamic cluster map can be explored at:

http://cs.everyaware.eu/event/widenoise/map?lon=-0.3869&lat=51.4728&zoom=13.
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Figure 2.33: Distribution of sound pressure level measurements during the Heathrow campaign.
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Figure 2.34: Number of users with certain number of measurements.
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Tag Count Note

garden 500
plane 268
street 78
aircraft 63
south runway 44
background 42
noisy 33
north runway 31
back garden 23 Also counted as "garden"
big plane 20 Also counted as "plane"
heathrow 18
small plane 15 Also counted as "plane"
airplane 15
twickenham rd 14
distant plane 12
train 12
middle of college road 11
balcony 9
plane heard from inside double glazing 9 Also counted as "plane"
traffic 9
front of house 8
car 8
quiet sunday 7
walking through park 5
coming in on both runways 4
747 4
inside home aircraft noise 4
river 4
bus 3
wrongrunway 3

Table 2.13: Top 30 tags by count.

Perception Overall Average Amount (non 0.5) Average (excluding 0.5)

Love / Hate 0.65 1147 (±38 %) 0.89
Calm / Hectic 0.59 936 (±31 %) 0.80
Alone / Social 0.44 773 (±26 %) 0.28
Nature / Man-Made 0.81 2003 (±67 %) 0.97

Table 2.14: Summary of the perception ratings given in the campaign around Heathrow
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Figure 2.35: Distribution of the perception ratings given in the campaign around Heathrow
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Figure 2.36: WideNoise map for the area around Heathrow (clustered measurements).

Figure 2.37: Grid-based map for the area around Heathrow.
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2.3.4 Conclusions for set-up of case studies: noise

The results of the large case study at Heathrow demonstrate that uncoordinated sensing across an
area this large does not lead to dense spatial and temporal coverage. Reaching dense coverage
without coordination would require massively more contributors, which may not be attainable in
the short term. An alternative approach is to foster collaboration between smaller groups of highly
motivated contributors that live close to one another. By coordinating the actions of such groups
it is possible to achieve dense spatio-temporal coverage, albeit for much smaller areas. Such an
approach has been successfully demonstrated by [D’Hondt et al., 2011; Ellul et al., 2011; Francis
et al., 2008; Stevens, 2012].

Therefore we consider it advisable to move towards a more coordinated, goal-driven approach in
future case studies of urban noise conducted in the scope of the EveryAware project. By devising
targeted data collection protocols – specifying where, when and for how long contributors should
measure – in collaboration with committed contributors we can aim to answer specific questions
voiced by the citizens19. This approach could increase motivation and commitment and thereby
result it better spatio-temporal coverage – at least for the chosen times and places – than is feasible
without such coordination. Of course these case studies can happen alongside uncoordinated
worldwide WideNoise usage.

19E.g. What is the average peak exposure caused by overhead flights? Are regulations on night flights respected?
Are flight of airline X consistently louder than those of airline Y? Is there a difference in the average sound level in street
A vs. street B? Is there a difference between summer and winter? Etc.
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Chapter 3

Interpolation tools

The use of interpolation techniques is required to estimate air quality or noise at locations where
measurements are lacking. A multitude of (geostatistical) interpolation techniques have been de-
veloped (summary from [Akkala et al., 2010]):

• Nearest Neighbour

• Triangulated irregular network

• Polynomial regression

• Global polynomial interpolation

• Local polynomial interpolation

• Trend surface analysis

• Inverse distance weighting (IDW)

• Splines

• Kriging

• Radial basis functions

• Artificial neural networks

A selection of these methods will be tested for application in EveryAware. These tests will be
performed on EveryAware data that will be acquired in future test cases. Awaiting these event, a
brief overview of techinques is given and their applications in the air quality and noise literature are
highlighted.

3.1 Review of techniques

• Nearest neighbour interpolation is a simple interpolation technique by which the value of
a parameter at a non-given location is estimated as the parameter value at the nearest
(e.g. lowest Euclidean distance) location. Nearest neighbour does not consider the value of
neighbouring points, and yields a piecewise-constant interpolant.

• The triangulated irregular network (TIN) model represents a surface as a set of contiguous,
non-overlapping triangles. Within each triangle the surface is represented by a plane. The
triangles are made from a set of points called mass points. A TIN is typically based on De-
launay triangulation on a selection of mass points which are most necessary to an accurate
representation.
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• Polynomial regression interpolation fits the parameter of interest as high order bivariate poly-
nomial function of regressor variables (latitude, longitude). The value of a parameter at lo-
cation i (latitudei, longitudei) is estimated by the polynomial function. Global polynomial
interpolation makes use of one polynomial function to cover the entire study area, whereas
local polynomial interpolation fits many different polynomial functions, each of which is opti-
mized for a neighbourhood.

• Trend surface analysis

• Inverse distance weighting (IDW) is an interpolation technique that assigns a value to un-
known points based on a weighted average of scattered known points. The weighting func-
tion is a function of the distance between the unknown point and known points, and can take
various forms [Shepard, 1968].

• Splines interpolation fits piecewise polynomial functions (most often cubic) through the data
as a continuous surface. At unknown locations, the spline fit gives an interpolated value.

• Kriging methods are known as optimal interpolators because they supply the best linear
unbiased estimate of a variable’s value at any point in the study area. Kriging methods exploit
the spatial dependence in the data. The major advantage of Kriging over other methods is
that kriging supplies standard errors (kriging variance) at any unsampled location in the study
area.

• Artificial neural networks are highly flexible information processing paradigms that are in-
spired by the way biological nervous systems. The information processing system is com-
posed of a large number of highly interconnected processing elements (neurones) working
in unison to solve specific problems. ANNs learn by example through a learning process.

3.2 Interpolation methods for air quality: literature review

A literature review on the use of nearest neighbour interpolation techniques for air quality (based
on Web of Science searches using (1) nearest neighbour and air and (pollution or quality), and
(2) spatial and interpolation and nearest and air and (pollution or quality) as search terms) yielded
a small amount of results. Basically, two types of applications were found in the literature. A
first group of studies (2) used nearest neighbour interpolation to fill missing data into air quality
time series and to predict air quality time series. [Junninen et al., 2004] observed a reasonable
performance of NN interpolation to fill missing values, depending on the size of the data gap
and the parameter under investigation. Self organizing maps and multi-layer perceptron models
performed slightly better than NN, however, the computational power requirements of NN was
much less. [Gautam et al., 2008] propose a methodology to predict chaotic air quality time series
(ozone concentration) based on artificial neural networks coupled to a nearest neighbour search
algorithm. [Martin et al., 2008] apply k-Nearest Neighbours (k-NN) classifiers in order to predict
future peaks of carbon monoxide. [Shao et al., 2007] used a NN for interpolation of the output from
multi-scale air quality models from coarse resolution to fine resolution, and showed that bilinear
interpolation generally gains better results.

Another group of studies used NN interpolation to compute a map of pollutant concentrations which
were then used to assess the individual exposure to air pollution. In these studies, exposure is de-
termined by data from the nearest monitor. Most often, these results are further compared with
exposures derived from more complex interpolation methods. [Bell, 2006], for example, made ex-
posure estimates that were generated for a case study high ozone episode in the Northern Georgia
Region of the U.S. based on measurements and concentration estimates from an air quality mod-
elling system. Results based on concentration fields from the air quality modelling system revealed
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spatial heterogeneity that was obscured by approaches based on the monitoring network (nearest
monitor interpolation). Monitoring data alone was shown to be insufficient to estimate exposure
for certain areas, especially for rural populations. [Kim et al., 2009] compared nearest monitoring
and kriging interpolation for exposure predictions and assessed how both methods affect relative
risk estimates for cardiovascular events in a single geographic area. The authors concluded that,
when the underlying exposure distribution has a large amount of spatial dependence, both kriging
and nearest-monitor predictions gave good health effect estimates. For exposure with little spatial
dependence, kriging exposure was preferable but gave very uncertain estimates. [Son et al., 2010]
compared several interpolation methods to estimate individual-level exposures to air pollution from
ambient monitors for several air pollutants. Findings suggested that spatial interpolation meth-
ods may provide better estimates than nearest monitoring values alone by reflecting the spatial
variability of individual-level exposures and generating estimates for locations without monitors.

Triangulated irregular network is not implemented for air quality interpolation. A search (triangu-
lated irregular network and air and quality) did not give any record. Also polynomial regression
and trend surface techniques are, to our knowledge, not used for spatial interpolation of air quality
measurements.

The most common technique used in the air pollution field is Kriging. Kriging methods are used
for the real-time and historic assessment of the ambient air quality. The model RIO, for example,
is an interpolation model that can be classified as a detrended Kriging model [Janssen et al.,
2008]. In a first step, the local character of the air pollution sampling values is removed in a
detrending procedure. Subsequently, the site-independent data is interpolated by an Ordinary
Kriging scheme to a country-wide 5 by 5 km grid. Finally, in a re-trending step, a local bias is
added to the Kriging interpolation results. A non-exhaustive overview of studies that used Kriging
for the spatial interpolation of air quality parameters are given in Table 3.2.

Artificial neural networks have been used to forecast ozone and PM10 concentrations in an urban
area [Carnevale et al., 2011]. Here, artificial neural networks are applied to get point-wise fore-
casting. In the second step, the forecasts obtained at the monitoring station locations are spatially
interpolated all over the domain using the cokriging technique. [Pfeiffer et al., 2009] proposed a
new method to calculate the average spatial distribution of air pollutants based on diffusive sam-
pling measurements and artificial neural networks. The best fit could be achieved with an emis-
sions inventory including previously simulated concentration plumes and population density data
as input nodes for the neural network, resulting in realistic maps of the annual average distribution
of NO(2) in Cyprus using a 1 x 1 km grid. More examples of the use of ANN for spatial interpolation
of pollutant concentrations were not found. Recently, interpolation of air quality shifted toward the
so called land use regression models (LUR models). LUR models encompass a diverse group of
models that use additional covariates in addition the geospatial information to interpolate air quality
at unknown locations. The modelling core of LUR models is often a regression, but ANN have also
been applied in this context. Currently, most LUR models are implemented at a lower spatial and
temporal resolution (e.g. monthly or yearly averaged concentrations on a 1 by 1 km grid) and their
performance at high resolution remains unclear.

In conclusion, the most commonly used techniques are nearest neighbour, kriging and artificial
neural networks within land use regression models. In the majority of the applications the spa-
tial and temporal resolution of air quality maps is low (e.g. yearly averages on a 1 km grid) in
comparison to the data that are obtained in EveryAware. The potential of statistical models and
interpolation tools on a high resolution dataset is therefore questionable. Also the highly dynamic
behaviour of pollutants in an urban environment and the fact that the urban outdoor environment
largely consists of discontinuous line elements, interferes with the application of the described
interpolation methods.
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3.3 Interpolation methods for noise measurements: literature review

In stark contrast to air quality, there is surprisingly little literature about the use of interpolation
methods for (urban) noise, in particular when measured using the crowd-sourcing approach pro-
posed by the EveryAware project. The few studies that do mention interpolation methods in this
context do not justify the choice for a particular one. For instance [Tsai et al., 2009] and [Akgüngör
and Demirel, 2008] use Kriging to interpolate measurements of urban noise but neither substanti-
ate this choice, nor considers alternatives. [Abdurrahman and Bostanci, 2012] employ IDW, Krig-
ing, and Radial basis functions, but although they note that the choice of method significantly
affects the results they do not indicate which method was deemed most suitable. As far as we
know there is no established method for interpolation of noise measurements.

More generally we should note that, due to the central shared assumption of a continuous sur-
face [de Smith et al., 2009, Chapter 6], generic interpolations methods are not that suitable for
interpolation urban noise across large areas, due to the limited spatial and temporal reach (see
2.3.2) and the effect of obstacles such as buildings. Instead it is likely that better results could be
achieved if a noise-specific interpolation method (one that accounts for the physical propagation of
sound) were devised, instead of relying on a generic methods.

In earlier citizen science studies of urban noise [Ellul et al., 2011; Francis et al., 2008; Stevens,
2012] measurements where aggregated and averaged in cells of a regular grid, instead of using
an interpolation method across a wider area. This means the area of study is divided by a grid with
cells of equal size (e.g. with cells of 20×20 m). Then each individual measurement is assigned
to a cell based on its geographical co-ordinates. Statistics such as average, standard deviation,
minima and maxima can then be computed for the data in each cell. Finally a map is generated
representing the average sound level measured in each cell. An example of such a map is shown
in Figure 2.37. One of the factors that needs to be take into account when deciding on a suitable
size for the grid cells is the inherent error on geographical co-ordinates obtained from GPS. Such
errors tend to vary with the time of day (due to GPS satellite positions), atmospheric conditions,
and especially the density and height of nearby buildings [Stevens, 2012].

In the context of strategic noise mapping (typically based on predictions rather than measure-
ments) interpolation methods commonly play a role. However, as noted by [Murphy and King,
2010; Murphy et al., 2006], different software packages use different interpolation methods and
hence lead to different results (making maps of different cities hard to compare). Therefore the
authors stress that clear instructions on which interpolation method(s) must be used ought to be
incorporated in the END [European Parliament and Council, 2002], or supporting publications –
which now leave the choice to the local authorities responsible for the creation of the maps1.

1A task that is commonly subcontracted to specialised firms.
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Chapter 4

Conclusions and Perspectives

In EveryAware, data coverage is defined in two domains: (1) temporal coverage and (2) spatial
coverage. Basically, one sensor datum is acquired on a certain location in space and time. Com-
bining these data leads to a temporal and/or spatial representation of reality. The representativity
of this representation is directly linked to the temporal and spatial data coverage, where a higher
data coverage leads to a better representation.

Two environmental parameters are examined in the EveryAware project: (1) air pollution and (2)
noise pollution. Both pollutants are highly dynamic, resulting in a high variability of air quality and
noise levels, both in space and time. Examples were shown to illustrate the spatio-temporal vari-
ability of air quality and noise. Within this setting, the EveryAware test cases will be set up to
quantify the air quality and noise levels in urban environments. From the pilot campaigns it was
observed that the data coverage needed to characterize the air quality and noise level requires re-
peated measurements along the spatial and temporal dimensions. To satisfy the need of repeated
measurements, several types of data collection are defined. Opportunistic data collection is distin-
guished from data collection, the latter referring to a deliberately planned collection strategy, and
stationary data collection is distinguished from mobile data collection. The devices to collect envi-
ronmental data ,i.e. the SensorBox and the WideNoise smartphone application, allow to perform
these different data collection modes. However, the SensorBox is continuously measuring during
a period of time at a temporal resolution of 1 second, whereas the Widenoise application is used
in a more discontinuous way. Moreover, the number of citizens carrying the SensorBoxes is rather
limited compared to the number that has access to WideNoise, and the use of WideNoise is likely
to be more easy. The different operational modes of both devices require a different approach to
fulfil the data coverage needs.

Several test cases were deployed. From these campaigns it was observed that a quite high data
coverage could be obtained in the EveryAware data collection framework under certain conditions.
For air quality, a mobile data collection set-up can lead to a dense monitoring of the air quality.
Results showed however that – in order to get representative estimates of the air quality at street
level – focus and repetition are critical. For noise, most of the test case studies were confined in
space (Heathrow, Antwerp, Rome), in contrast to the worldwide application of WideNoise. From
the most elaborate test campaigns, the worldwide application and the Heathrow test campaign,
the participation differed a lot between citizens leading to a similar density plot of the number of
measurements in function of the proportion of participants. A few participants collect a major part
of the data. A big difference was found in the data perception rating between Heathrow (72%) and
the worldwide application (15%), most probably due to the more direct communication with the
participants in the former campaign. This example stresses the importance of direct involvement
to obtain high numbers of measurements in EveryAware. In future case studies of urban noise
conducted in the scope of the EveryAware project, it is advisable to move towards a more goal-
driven approach. By devising targeted data collection protocols – specifying where, when and for
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how long contributors should measure – in collaboration with committed contributors we can aim
to answer specific questions voiced by the citizens. This approach could increase motivation and
commitment and thereby result in better spatio-temporal coverage – at least for the chosen times
and places – than is feasible without such coordination. Of course these case studies can happen
alongside uncoordinated worldwide WideNoise usage.

In summary, the concerns voiced by citizens result in the definition of the measurement goals. In
turn, the goal of the measurement campaign determines the focus of the measurement campaign
(when and where are the measurements made) and the most suitable data collection scheme. The
measurement goal has also a direct impact on citizen involvement and the number of volunteers
that are prepared to carry out measurements. As indicated, the number of measurement devices
and their operation mode affects on the number of volunteers and feasibility of the different data
collection schemes. The number of volunteers, focus of the study and data collection scheme
determine the spatial and temporal data coverage. On the other hand, spatio-temporal data re-
quirements for a given measurement goal determine the number of volunteers needed and the
focus of the measurements.

 

number of 

volunteers 

focus 

measurement goals  

Spatio-temporal data 

coverage 

concerns voiced by 

citizens 

EveryAware sensors 
*AQ sensorbox 
*wideNoise 

data collection 

scheme 

Data interpolation can be used to estimate the air quality or noise at locations where observations
are lacking. Interpolation techniques establish a relationship between the air quality or noise at
unknown locations and the air quality or noise at (nearby) locations. Interpolation of air quality
finds its application in mapping and exposure studies. The resolution at which interpolations are
made is typically much coarser than the resolution of the EveryAware data (e.g. yearly averaged
concentrations interpolated on a regular 5 km grid). Their usefulness on a high resolution is ques-
tionable given the highly dynamic behaviour of air and noise pollution and the fact that the urban
outdoor environment largely consists of discontinuous line elements, but was not investigated so
far. Future research will assess the possibilities within the EveryAware framework.
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