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Executive Summary

This deliverable summarizes our work on community detection in folksonomies. Our work can be
grouped into three parts.

We present an approach that starts with the generation of a hierarchical clustering of the tag space
by iteratively applying the k-Means clustering algorithm. The tag clusters on the bottom level are
then considered as intensional descriptions of our FolkRank algorithm. For the choice of k-Means
as initial clustering algorithm, we provide the semantic grounding, which shows that the average
semantic distance of pairs of tags within clusters generated by k-Means is significantly smaller
than within randomly generated clusters.

A similar approach has been implemented in BibSonomy. Here, the focus lay on efficiency, since
we display the results online on all tag pages. We provide, for each tag, the community of users
that are mostly related to this tag.
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Chapter 1

Introduction

This deliverable summarizes our work on community detection in folksonomies. A key question for
this topic is what one should consider as a community. The literature provides many alternative
definitions, which are used in parallel. Even though all types of community that we considered are
defined semantically, i. e., by a tag or a set of tags, this variety is also reflected in this deliverable.

In Chapter [2, we present an approach that was presented at the International Conference on
Knowledge Management 2007 (Grahl et al., 2007). There, we start with the generation of a hier-
archical clustering of the tag space by iteratively applying the k-Means clustering algorithm. The
tag clusters on the bottom level are then considered as intensional descriptions of our FolkRank
algorithm. Users can belong to different communities (i. e., , the communities are overlapping) to
a different degree.

Chapter[3|provides the semantic grounding for the applicability of k-Means. This (up to now unpub-
lished) work shows that the average semantic distance of pairs of tags within clusters generated by
k-Means is significantly smaller than within randomly generated clusters. The semantic distance is
measured with the Jiang-Conrath distance in WordNet.

In Chapter [4} we describe an application of the community detection in BibSonomy. Similar to the
approach discussed in Chapter[2] we provide, for each tag, the community of users that are mostly
related to this tag. The computation is done again by the FolkRank algorithm. One of its benefits
is that a user may belong to a community around a tag even if he did not use the tag himself, but
used closely related tags or synonyms instead. The resulting communities are shown online in
BibSonomy on all tag pages.
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Chapter 2

Conceptual Clustering of Social
Bookmarking Sites

Currently, social bookmarking systems provide intuitive support for browsing locally their content.
A global view is usually presented by a tag cloud of the system, but it does not allow a drill-
down along a conceptual hierarchy. After having selected one tag, it leads to a disarranged list of
resources, and no further drill-down is possible.
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Figure 2.1: A user view of the hierarchy from top to bottom.

The first approach to community detection that we studied is based on an iterative application of
k-Means (Forgy, [1965) to a given folksonomy to generate a conceptual hierarchy (see fig. in
order to provide users in searching. The hierarchy is complemented with a ranked list of users and
resources which are most related to each cluster. The rankings are computed using our Folkrank
algorithm (Hotho et al., 2006).
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Figure 2.2: Generating a conceptual hierarchy from bottom to top.

Our approach (see detailed description in (Grahl et all, [2007)) is visualised in Figure [2.2] for the
bookmarking system del.icio.us. The algorithmic application is conducted from bottom to top on a
weighted tag-tag-concurrence matrix, where the lowest level presents the most fine grained level of
the hierarchy —in contrast to the top level, which is a summary of the entire topics of del.icio.us.com
of July 2005. To facilitate that users can find others users with similar interests and resources which

rank |user rank |[URL
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1.5E-4|konno 7.8E-5| http://findory.com,

1.4E-4 |tomohiromikam: || 7.4E-5| http://www.betanews.com/
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1.2E-4 |masaka 7.1E-5| http://cgi.cse.unsw.edu.au/ collabrank/del.icio.us/

Figure 2.3: Ranked list of users and resources.

are related to the personal browsing history, we applied the FolkRank ranking, using the resulting
set of tags of the fine grained level as arguments. One example run is shown in Figure 2.3for the
red marked cluster on the right side of the hierarchy.
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Chapter 3

A semantically grounded evaluation of
the result of the k-Means algorithm on a
folksonomy

A key question for the approach presented in the previous chapter is if k-Means is the appropriate
clustering algorithm for the task at hand. In this chapter, we present first steps towards the evalu-
ation of the clusterings generated by the k-Means algorithm. The work is unpublished up to now;
therefore we provide a longer presentation.

A popular and not already solved problem in unsupervised data mining methods is the evaluation of
clustering results. A common way of evaluation is the measurement with so called benchmark data
sets like Zachary’s karate club (Zacharyl, [1977) or the Enron Corpus (Klimt and Yangl, [2004). The
problem of evaluating clusterings of folksonomies is the lack of benchmark data sets. The standard
benchmark data are not applicable because of the specific tri-mode structure of folksonomies.
Therefore, we focus here on the first steps of evaluating clustering results by considering the
semantic distance of pairs of tags within and across clusters.

We will compare the clustering generated by k-Means with two clusterings: The first one serves
as null hypothesis; it consists of randomly assigned clusterings, which still have the same size dis-
tribution as the k-Means clustering. This clustering is obtained by randomly shuffling the k-Means
clustering. The second clustering is one that we consider as optimal: it is using the semantic dis-
tance between all pairs of tags as input, and optimises inter- and intra-clustering distances. The
optimisation is done with the PAM (partitioning around medoid) clustering algorithm (Kaufman and
Rousseeuw, 1990). For each of the three versions, we will compute the macroaverage p and mi-
croaverage v of the semantic distances between all pairs of tags. As distance measure, we use
the Jiang-Conrath distancer_r] in WordNet(Fellbaum, [1998), which has been empirically validated
by Budanitsky and Hirst (Budanitsky, 2001). We will then assume that k-Means performs good
if it is close to the (lower) value of the PAM clustering on the Jiang-Conrath measure and farther
away from the (higher) value of the randomly generated clustering. To this end, we performed the
following steps.

Dataset and Basic Notations: We have apply our method on two data sets of the social book-
marking system del.icio.us.

Dataset from June 2004 In June 2004, we crawled del.icio.us and obtained a set U of 3,301
users, a set T' of 30,416 tags, and a set R of 220,366 resources. There were in total 359,025
posts, i. e., triples of the form (u, S, ), indicating that user u € U has assigned all tags contained
inS C Ttoresourcer € R. ThesetY C U x T x R of all tag assignments consist of 616,819
tag assignments.

'In order to make Jiang-Conrath applicable, we restricted the evaluation on all tags that were present in the noun
part of WordNet.
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Figure 3.1: Distribution of Jiang-Conrath Distance of tag-tag tuples in del.icio.us 2004.

Dataset from July 2005 Between July 27 and 30, 2005, we also crawled del.icio.us and received
totally a set U of 75,085 users, a set T' of 456,666 tags, and a set I of 3,006,114 resources. There
were in total 7,281,940 posts, i. e., also triples of the form (u, S, r), indicating that user u € U has
assigned all tags contained in S C T to resource + € R. ThesetY C U x T x R of all tag
assignments consist overall of 17,362,082 tag assignments.

Data Pre-processing:

Before we started the analysis, we have cut off the long tail of the dataset by using the p-core algo-
rithm (Jaschke et al.,2007) with p = 10. This means that all remaining users, tags, and resources,
have at least in 10 posts. Regarding the further data pre-processing, we only consider those tags
which exist in the noun part of WorldNet. Furthermore we removed those tag assignments, which
contain non-alphanumeric characters. For the matrix for the PAM algorithm, we built up an undi-
rected weighted graph, where each pair ¢;, ¢; of tags is connected by an edge where the weight is
the smallest Jiang-Conrath distance of all the occurrences of the two tags in WordNet:

W(ti,tj) = min(JC(ti,tj)) (31)

k—Means is computed on a two-mode projection of the folksonomy, which is defined as follows. For
a given user u, the following tags 7', and resources R,, are connected to u: T, = {t € T' | 3r :
(t,u,r) € Y}, R, ={u e U | 3t: (t,u,r) € Y}. Furthermore, let tr, := {(t,r) € T x R |
(t,u,r) € Y} the (tag, resource) pairs occurring with w. Each tag t; € T is then represented in
the | R|-dimensional vector space by the vector ' := (F}f)j:17.._7|3| witht? = W(ts, ;).

The pre-processing reduces the data set of July 2004 to 47,887 tag assignments which con-
tain 1036 users, 452 tags and 2101 resources (30,215 posts); and the data set of July 2005
to 4,993,414 tag assignments which contain 6,373 tags, 35,308 users and 70,567 resources
(2,340,286 post).

First Insights. To get a first insight into the behavior of the Jiang-Conrath measure, we evaluated
its distribution independent from any clustering structure over all the data set (see fig. [3.1). This
evaluation excludes all tags which contain any additional characters, and the synsets assignments
are made such that they result in a minimum Jiang-Conrath-distance.
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Comparison: Our evaluation is based on the macroaverage 1 and microaberage v of the Jiang-
Conrath distances within the clusters:

1 1
M= = T E JC(ti,tj) (32)
|C| cC |C‘ titj€ci<j
c i €G]
1

ceCty,tj€c,i<j

where C'is a clustering on the set T of tags and c iterates over the individual clusters of C.

The shuffled clustering is created based on the origin k-Means clustering C' by applying a Knuth
Shuffle (Knuthj [1981).

Both values, the macro average i (see eq. and micro average v (see eg. gives evidence
about the semantic quality of clusters ¢; € C'. The computation of the Jiang-Conrath distance is
based on the tuplewise comparison t; € T, of tags within one cluster. The macro average weighted
the size of each cluster and considers the numbers of tupelwise comparison 7 in each cluster. In
comparison to the macro average of C, the micro average weights over all tuples T concerning a
clustering C.

The choice of the partitioning parameter of k-Means was made manually, such that the resulting
clusters contain 3-18 elements (for the data set July 2005 and June 2004), which seems to be
suitable to human perception.
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Figure 3.2: Comparison of macro and micro average with a random generated clustering of
del.icio.us 2004.

Results of data for June 2004 and July 2005. We computed and compare the values in Eq.
and in Eq. [8.3]for k-Means with different partition parameters, for the null hypothesis provided by
the shuffled clustering, and for the PAM application which provides a lower bound. As seen in
Figure[3.2] the macro and micro averages of the regular clusterings are different from those of the
randomly generated clusterings. In both cases, the values of the regular clustering are lower. The
computation of PAM is not conducted for the delicious dataset of July 2005 due to performance
reasons.
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Chapter 4

Implementation of Community
Detection in BibSonomy

We have implemented a community detection functionality in BibSonomy. It follows an approach
similar to the one discussed in Chapter [2| but focusses on efficiency, as this feature should not
slow down the generation of the web pages.

We compute communities for each tag. Taking the tag simulation as an example, its community is
shown in the lower right corner of the web page http://www.bibsonomy.org/tag/simulation/
2order=folkrank| (see Figure [4.7). The given related tags are based on tag-tag co-occurrence,
while the similar tags are computed by a more sophisticated context measure. The actual commu-
nity around a tag (titled related users in our system) is computed by the FolkRank algorithm.

As its computation comprises recursively spreading weights through the complete underlying folk-
sonomy, online computation bears the risk of slowing page generation time significantly down. In
order to keep our system highly responsive, we decided to source out the FolkRank computation to
a background process. This process is started periodically and computes (among others) all pos-
sible user communities around all tags currently present in the system. The results are then made
available to the online system. This strategy reduces the effort of community detection for a single
tag to a simple lookup at page generation time, at the cost of a slight delay with regard to new tags
entering the system. However, as the FolkRank communities are recomputed frequently (currently
approximately once per week), we believe this tradeoff is justified. Furthermore, for communities
around existing tags, our experience suggests that weekly re-computation seems to be sufficiently
able to capture changes.

A major benefit of using FolkRank for community detection is that that a user may belong to a
community around a tag even if he did not use the tag itself, but closely related tags or synonyms
instead. This feature enables users to discover other users interested in the same topic as them-
selves, but using a differing vocabulary to describe it.

Taking the community list as a starting point, an interested user can click on any member user
name to get an overview of this user’s resources and tags. Choosing then another tag together
with the FolkRank-option, the user can browse through different communities in BibSonomy and
discover interesting content and like-minded people.
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