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Abstract-In this letter, we reconsider in more quantitative 
detail the possibility of enhancing the output intensity of a FEL 
operating with a bunched electron beam and a finite macro- 
pulse duration by adjusting the cavity length while the signal 
grows. 

S it is well known, the gain of a FEL oscillator, op- A erating with a pulsed e beam, depends on the mis- 
match 62, from the nominal cavity length, necessary to 
compensate the effect of optical packet velocity reduc- 
tion, induced by the lethargy and on pc = Nx/a,, which 
measures the relative slippage of the optical packet over 
the electron bunch (for a discussion on the short pulse 
effects see [l]). A practical formula, including the above 
quoted dependences, has been derived (see [2] and ref- 
erences therein) and reads (for the meaning of symbols 
see Table I) 

G(8, p c )  = -0.85g0 

The quantity 8 is a dimensionless parameter and is usually 
referred to as the cavity detuning parameter. 

Its validity has been checked numerically for small and 
large values of pc and analytically for small pc only.a 

The gain relation (1) has been modified in [2] to include 
saturation effects due to the intensity intracavity growth, 
namely 

( 3 8 ,  pc; 1) 

= -0.85g0 p n  [: (I + $) (1 + 111 - 11 
8 s  

(2) 
where 7 is the dimensionless optical intensity (7 = Z / Z s ,  
1, being the FEL saturation intensity which is the quantity 
halving the small-signal gain). The above expression re- 
produces (at least qualitatively) two important features 
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the second order in fit. 

TABLE 1 

go = small-signal gain coefficient 

46L 

go A 
0 = - cavity detuning parameter 

62 = cavity mismatch from the nominal cavity length 

p, = A ,  A = NX = slippage distance 

0, = 0.456 synchronous cavity detuning parameter 

a: 

1) the maximum gain saturates according to a relation 
analogous to that of conventional lasers 

(1 + F) (1 + I )  

2) the value of 8 yielding the maximum gain decreases 
with 7 according to 

(4) 
8 s  8 * ( i )  = 

as a consequence of the fact that with increasing-intracav- 
ity power gain saturation is induced with a consequent 
reduction of the lethargy [2]. 

In [2] it has been pointed out that the output power can 
be enhanced by moving the cavity mirrors while the in- 
tercavity signal grows in such a way that the system is 
operating at the value of the cavity length [see (4)] pro- 
viding the maximum gain. Practical solutions to realize 
the mirror movements were also discussed. 

In this letter, we complete the analysis of [2] presenting 
simple formulas which allow a straightforward evaluation 
of the above quoted enhancement. 

The above relations have been used to follow, after each 
round-trip, the growth of the dimensionless intracavity 
power, using the following rate equation 

( 5 )  

where n refers to the round-trip number and yT  refers to 
the cavity losses. Imposing the condition 

(6) 

- - 

1, + I = 1, + [W, pc> 7,) - yrl7, 

G(8, pc, I*>  = Y T  
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we get the following relation 

- - _._ 

referred as from now on, as "fully saturated intensity" 
(FSI), exhibiting a maximum at 

where 

- G*(O) 
1; = - - 1  (9) 

YT 

The peak output laser intensity is linked to the above 
quantities by 

where N is the number of undulator periods, PE is the peak 
e-beam power and 

- 
I *  

The comparison of (10) with the predictions of the 1-D 
numerical analyses, also discussed in [ 11, has confirmed 
the validity of the above simple procedure. According to 
(10) the function x (0 ,  p, )  should be understood as a short 
pulse correction to the efficiency of a FEL. The FSI is 
therefore a measure of the maximum attainable output 
power in a FEL operating in the low gain regime. How- 
ever, such a value can be however reached only after a 
number of round-trips and, therefore, owing to the finite 
duration of the e-beam micropulse, the effectively ob- 
tained output power may be lower. 

To give an example we have reported, in Fig. 1 , I  ver- 
sus 0 at different round-trips and for p, = 1 ,  y T  = 0.05, 
and go = 0.5. The FSI (the solid line in the plot) is reached 
after 300 round-trips. Which amounts, for an optical cav- 
ity 6 m long, to a time of about 6 P S . ~  Therefore, the 
e-beam macropulse should be at least 6 ps long. We must 
also underline that the FSI, for different 0 ,  is reached at 
different times. In fact the region corresponding to that 
around the maximum gain is reached in a relatively shorter 
time (in about 50 round-trips in the case of Fig. 1 ) .  This 
fact is, perhaps, better clarified in Fig. 2 where we have 
reported 7 versus n (i.e., the round-trip number) at dif- 
ferent values of 0 .  Furthermore, in Figs. 3 and 4 we show 
the same as in Fig. 2 for different parameters; it is evident 
that the time to reach the FSI, is larger with smaller gain. 

In [2] we have raised the question whether it is more 
convenient to operate with a fixed cavity length (around 
0,) or move the mirrors (while the signal grows) from 
0* (0) to OM, satisfying at any time during the interaction. 

bThe time to reach the FSI should not be confused with the rise time, 
which in the case is much smaller (2.24 ps). 
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Fig. 1 .  Normalized intensity 7 versus 0 ,  at different round-trips for go = 
0.5, y T  = 0.05, and pc = 1 .  
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Fig. 2.  7 versus n at different 6 (n denotes the number of round-trips). (a) 
e = eJ(1 + p c / 3 )  and (b) e = (0,/0.85)y,/go. 
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Fig. 3 .  7 versus 0 at different n for go = 0.1, y T  = 0.05, p, = 0.16  
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Fig. 4. 7 versu! 
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3 at different n for go = 0.2,  y r  = 0.05, p, = 1 

the maximum gain condition (4). We have concluded that 
the second solution is by far more convenient for a larger 
go/yT ratio. In this letter we dwell on this point trying to 
clarifying it in a more detailed and quantitative way. 

We must preliminarily emphasize that the small-signal 
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net gain at OM is not zero but [inserting (8) into (l)] 

or equivalently [see (5 ) ]  

The above net gain is small, we expect therefore that, 
if we set the cavity at O M ,  the system will eventually sat- 
urate at I* but in a longer time. There are three possible 
options 

1) to work with fixed cavity at 8*(0) [see (4), i.e., 
maximum small-signal gain] 

2) to work at O M  
3) to work moving 8, from 8" (0) t o  O M  according to the 

previous prescription (following 8* ( I  ) while I grows ). 
The intensity growth per round-trip is shown in Figs. 5 

and 6 ,  for different values of the main parameters. In case 
1, saturation levels lower than Z; are reacned; on the 
other side, both configurations 2) and 3 ) ,  eventually reach 
the FSI, but the last case yields this value in a time which 
is shorter with increasing go/yT ratio. We must underline 
that the mirror movement solution seems to be advanta- 
geous in any case, since it allows the buildup of the ra- 
diation from the very beginning, together with a large out- 
put signal. Before concluding this letter, let us add infor- 
mation on the orders-of-magnitude of the times and dis- 
placements involved in the mirror movements. According 
to (4) and (8) we find that the required 8 variation is given 
by 

and therefore the cavity should be displaced by the fol- 
lowing quantity 

A S  = 1.3 X lO-'[G*(O) - yj-1 A. (14) 

The square brackets in the above equation contain the 
small-signal net gain. Unfortunately, there is not an anal- 
ogous simple expression for the time, or the number of 
round-trips, in which the displacement, given by (lo), 
should be achieved. Just to give some numerical exam- 
ples, we find that a FEL operating at 1 pm with N = 50 
and a cavity 12 m long, requires A 6: = 2 pm in At = 0 .8  
ps (namely the mirrors should be moved with an average 
velocity of 2.5 ms-'). 

A further point to be stressed is that the curve (c) in 
Figs. 5-7 has been obtained moving the mirrors not con- 
tinuously, but following the signal growth according to 
(4). The 8 displacement velocity (called characteristic ve- 
locity U , )  can be obtained differentiating (4) with respect 
to the round-trip number and thus getting 

U 
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Fig. 5 .  7 versus n (a) and (b) as in Fig. 3 ,  (c) with movable mirrors (go  
= 0.5, -yr = 0.01, pc = 1). 
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Fig. 6.  7 versus n (a) and (b) as in Fig. 3 ,  (c) with movable mirrors (go  
= 0.2,  -yr = 0.05, pr = 1). 
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Fig. 7. 7 versus n (a), (b), and (c) as in Figs. 6 and 7. (d) movable mirrors 
with velocity V ,  (see text); ( e )  movable mirrors with velocity l;,. It must 
be understood that in the cases (d) and ( e )  when the plareau is reached, tne 
mirrors are not moved any more. 

It is difficult in practical cases, to follow exactly the 
above velocity "law," e.g., it is easier to move the mir- 
rors at a constant speed. The modification in the round- 
trip optical power growth are shown in Fig. 7, in which 
the curve (d) has been obtained shifting the mirrors with 
a constant velocity, corresponding to the average char- 
acteristic velocity E,. Finally, the curve (e) has been 
obtained moving the mirrors with a constant speed of 
about a 3,. 
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