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Directed models of self-organized criticality are studied in the framework of a real-space renormalization
group of a different type. The identification of a suitable phase space in which to define the renormalization
transformation and the coupling with the stationarity condition enables us to clarify the nature of the critical
state. The renormalization equations are found to have an attractive fixed point, as expected from the self-
critical nature of the model. The values of the critical exponents obtained by this procedure are in excellent
agreement with exact results.@S1063-651X~96!10007-6#
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I. INTRODUCTION

Over the past few years much attention has been devoted
to the study of sandpile models, a class of systems intro-
duced by Bak, Tang, and Wiesenfeld as a paradigm of self-
organized criticality~SOC! @1#. This term refers to the ten-
dency of large dynamical systems to evolve spontaneously to
a critical state having spatial and temporal self-similarity.
Many examples of systems showing this kind of behavior
have been found in different fields ranging from geology@2#
to economics@3# to biology @4#. Recently Pietroneroet al.
@5# introduced a renormalization scheme of a type that is able
to describe the self-organized critical state of sandpile mod-
els. From the point of view of the renormalization group
~RG!, a SOC system can be viewed as a system in which no
fine tuning of a critical parameter~e.g., the temperature in
usual phase transitions! is necessary in order to get critical-
ity. The critical state is reached spontaneously and this cor-
responds to a completely attractive fixed point of the RG
transformation. More recently this scheme has been extended
and generalized, to the wide class of dynamical systems hav-
ing a nonequilibrium stationary state with critical properties,
under the denomination of dynamically driven renormaliza-
tion group @6#. In this paper we discuss the application of
such a scheme to the class of directed sandpile models. Dhar
and Ramaswamy@7# introduced a variant of the original
sandpile model@the Bak-Tang-Wiesenfeld~BTW! model#
@1# incorporating a preferential direction into the dynamical
rules of the BTW model. They found an exact solution to the
model and calculated the critical exponents and the two-
point correlation function. The introduction of a preferred
direction is, as in percolation problems, a relevant perturba-
tion, i.e., a perturbation that changes the critical behavior of
the system. Indeed, the isotropic BTW model and its directed
variant belong to different universality classes.

The first step of the method is the identification of a suit-
able cell for the definition of the cell-to-site transformation.
The crucial problem is that the cell has to be invariant under
RG transformation@8#. For directed models this means that it
has to conserve the orientation with respect to the preferen-
tial direction. From this point onward the method can be split
into two phases. The first is the identification of the param-
eters that characterize the static and dynamic properties of

the critical state. This corresponds to the identification of the
proper phase space in which to study the evolution of the
dynamics under scale transformations. The second step is the
coupling of the renormalization equations to a stationarity
condition that characterizes the driving of the system in its
steady state. The stationarity condition provides the weight
of the geometrical configurations in the stationary state. This
condition allows us to obtain the renormalized stationary pa-
rameters that drive the system in the asymptotic steady state.

The RG transformation we obtained evolves under itera-
tion to a completely attractive nontrivial fixed point. This
reflects the self-criticality of the model and represents a
mechanism for the generation of SOC. We are also able to
identify the universality class of various models by studying
the basin of attraction of the RG fixed point.

Finally, we compute the critical exponents that describe
the system. This is accomplished by making direct use of the
scale-invariant dynamics, i.e., the fixed-point properties of
the system. The values obtained are in excellent agreement
with the exact results of Dhar and Ramaswamy@7#.

The outline of the paper is the following. In Sec. II we
recall the definition of the model and discuss its phenom-
enology. In Sec. III we discuss the choice of a suitable cell
for the cell-to-site transformation. Section IV is devoted to
the choice of the parameter space~phase space! in which to
study the evolution of the system under RG transformation.
In Sec. V we write the renormalization equations and couple
them to the stationarity condition. In Sec. VI we compute the
critical exponents and we identify the different universality
classes. Finally, in Sec. VII we draw the conclusions.

II. DEFINITION OF THE MODEL

In this section we specify the rules of a directed sandpile
model @7# defined on a triangular lattice. Each sitei is as-
signed an integer variableE( i ) called energy. The dynamics
of the model is defined by the following rules.

~i! Each variableE( i ) is initialized with a random integer
value such that 0<E( i ),Ec , whereEc is a threshold value
we fix equal to 3.

~ii ! A site is chosen at random and its energy is increased
by one unit.
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~iii ! If E( i )>Ec for a sitei , this site relaxes and transfers
its energy to the three nearest-neighbor sites in the half plane
defined by the preferential direction~Fig. 1!:

E~ i !→E~ i !23,

E~ j !→E~ j !11 ; jP$3nn%, ~1!

where$3nn% denotes the set of nearest neighbors sites that
receive the energy.

~iv! The relaxation process~avalanche! continues until all
the sites have relaxed, i.e., untilE( i ),Ec; i .

~v! Steps~ii ! is repeated.

After a transient period the system reaches a stationary
critical state in which the energy added to the system equals,
on average, the energy flowing out of the system by means
of avalanches. This critical state can be characterized by the
following set of critical exponents. Denoting withs the num-
ber of sites involved in an avalanche, the distribution of ava-
lanches is described by a power law

P~s!;s2t. ~2!

Analogously,

P~r !;r2l ~3!

and

P~ t !;t2a, ~4!

wherer andt are the linear dimension along the preferential
direction and the lifetime of the relaxation process, respec-
tively. The variabless, r , and t are linked by the scaling
relations

t;sx, t;r z, s;r D. ~5!

We have defined six critical exponents, which are not all
independent. By definition we obtain

x5
z

D
. ~6!

From the identitiesP(r )dr5P(s)ds5P(t)dt, with r , s, and
t related by Eq.~5!, the following scaling relations can be
obtained:

a511
D~t21!

z
, ~7!

l511D~t21!. ~8!

Therefore, in order to describe the critical behavior of the
system, it is enough to compute three critical exponents, for
examplet, z, andD.

Dhar and Ramaswamy found thatt54
3. The value of the

dynamical exponent is deduced from the observation that the
avalanche front advances at a constant rate of one site at each
time step. Therefore

r;t ~9!

and we obtain

z51. ~10!

Note that in the case of a directed model the exponentD,
which links the area of an avalanche~the number of sites
involved! and the linear extension of the avalanche in the
preferential direction, is not, as in the isotropic case, the
fractal dimension of the avalanche clustersDf , which by
virtue of the compactness of the clusters isDf52 @7# ~see
Ref. @9# for the isotropic case!. In directed models there are
two different lengths characterizing an avalanche: the dis-
tancer from the origin of the avalanche to its active front
and the avalanche widthw. The number of sites involved in
an avalanche scales as

s;rw. ~11!

Dhar and Ramaswamy showed that the perimeter of the ava-
lanche can be described as two annihilating random walks.
This fact yields the scaling for the avalanche widthw,

w;t1/2;r 1/2. ~12!

Using this result yields the required scaling relation

s;r 3/2, ~13!

giving D53
2. The values we obtain in Sec. VI by our RG

calculation are in excellent agreement with these results.
The dynamics of the system is characterized by two dif-

ferent time scales@5#: the avalanches are very fast with re-

FIG. 1. Definition of the different kinds of sites and the micro-
scopic dynamical rule for the directed sandpile model.
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spect to the average time between two additions of energy.
That means that during the evolution of an avalanche there is
no addition of energy. Each avalanche is thus a well defined
object. On the other hand, the slow dynamics~the dynamics
of additions of energy! accounts for the stationary properties
of the system.

III. CHOICE OF A CELL

In order to implement a renormalization-group procedure
for this model we use a cell-to-site transformation to average
out the degrees of freedom at small scale. First we choose a
cell that is invariant under the RG transformation, i.e., whose
orientation with respect to the preferential direction does not
change under the RG transformation. The natural choice for
a cell on the triangular lattice~Fig. 2! is not invariant under
the coarse-graining transformation. At each step of the
coarse-graining procedure, the cell rotates by 90° with re-
spect to the preferential direction@8#. Therefore the elemen-
tary cell is not a good choice because at each step it produces
a lattice that has a different orientation with respect to the
preferential direction. That means that the dynamical rules
could be different at any length scale. Therefore we have to
choose a different cell, one that preserves the lattice orienta-
tion. The simplest cell satisfying the requirements is shown
in Fig. 3 @8#. This cell has a scale factor equal to 2, i.e., the

length scalesa(k) anda(k11) at scales (k) and~k11! respec-
tively, obeya(k11)/a(k)52.

IV. PHASE SPACE

The choice of the phase space in which to define the
renormalization transformation has to reflect the property of
the system to show a time-scale separation: avalanches are
very fast with respect to the average time between two addi-
tion of energy.

In full generality we can identify three classes of sites@5#
~see Fig. 1!.

~i! Stable sitesare those sites whose energy is far from the
critical value. This implies that the addition of a quantum of
energy will not induce a relaxation.

~ii ! Critical sitesare those sites whose energy differs by
one from the critical value so that the addition of a quantum
of energy will induce relaxation

~iii ! Unstable sitesare those sites whose energy equals or
exceeds the critical value so that they will relax at the next
time step.

Between avalanches the system contains only critical and
stable sites so that the critical state can be described by a
probability r, which is the density of critical sites. The pa-
rameterr can be viewed as a control parameter that drives
the balance between the energy added to the system and the
energy flowing out of the system with the avalanches. How-
ever, it is not a control parameter in the usual sense of criti-
cal systems. Tuning ofr to get criticality is not necessary
because successive applications of the RG transformation ad-
just it to its critical value.

The above representation of a configuration can be ex-
tended to describe the system at any length scale (k). A
coarse-grained site is said to bestable if the addition of a
quantum of energydE(k) at the scale (k) will not induce
relaxations towards neighboring sites. The quantitydE(k) is
also the mean energy that two sites exchange at the length
scale (k). On the other hand, a site is calledcritical if the
addition ofdE(k) will induce a relaxation. With these defini-
tions in mind, we introduce the parameterr(k) as the density
of critical sites at the scale (k).

The dynamic rule itself changes under the coarse-graining
transformation: in the microscopic dynamics a site relaxes
into three neighbors, but this is not necessarily the case for a
coarse-grained cell. In order to include the possible prolifera-
tions of parameters occurring under coarse-graining transfor-
mation, we define, independently of what happens at the
minimal scale, a probability vectorPW (k) whose components
represent the probabilities for the possible mechanisms for
energy transfer at a coarse-grained scale (k).

Given a series of relaxations of sites at a scale (k), we
have to specify the corresponding relaxations of cells at the
scale (k). These are the relaxations of sites at the scale~k
11!. A site at the scale~k11! relaxes if the relaxation pro-
cesses at the lower scale (k) span the cell according to the
spanning condition and transfers the energy to some neigh-
boring cells. A cell is said to be spanned if the relaxation
processes involve at least two different sites. In our scheme
the relaxation at a generic scale (k) can occur in five differ-
ent ways~Fig. 4!: P 1

(k), the probability for the energy trans-

FIG. 2. Elementary cell for a triangular lattice.

FIG. 3. Four-site cell invariant under the RG transformation
used in our RG scheme.
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fer to one lateral neighboring site;Pd
(k) the probability for

the energy transfer to the central neighboring site;P 2
(k) the

probability for the energy transfer to the central and to one of
the lateral neighboring sites;P f

(k) the probability for the en-
ergy transfer to both the lateral neighboring sites; andP 3

(k)

the probability for the energy transfer to the three neighbor-
ing sites.

We have chosen a limited parameter space that does not
allow for relaxation into next nearest neighbors or backward
relaxations~and therefore also no multiple relaxations!. This
choice is obviously an approximation, but one that is always
present in real-space renormalization-group calculations. We
have incorporated the preferred direction into our scheme
through the choice of the parameter space and the spanning
condition. A more generalized scheme should differentiate
between isotropic and directed models only through the
spanning condition. The spanning condition for directed
models would be to consider only processes that distribute
energy in the preferred direction.

We note that among the processes that contribute to the
different components ofPW (k) there are also processes that
involve sites 2 and 3 in Fig. 5. Such processes do not transfer
energy to the cells to which sites 2 and 3 belong; those pro-
cesses, in fact, do not span but just touch these cells in the
process of energy transfer to other cells. Therefore sites 2
and 3 can only transfer energy out of their own cells at scale
(k). In order to take into account such processes we consider
an apparent cell composed of six sites, the four sites of the
chosen cell plus sites 2 and 3 of Fig. 5. The statistical
weights of processes not involving sites 2 and 3 will be
unaltered. The cell used for the renormalization procedure is
the four-site cell and the introduction of the apparent cell is
just a way to take into account processes in which site 1
transfers energy to sites 4, 5, or 6 in an indirect way via the
sites 2 or 3.

The model we have defined in Sec. II corresponds, at the
minimal scale, to the vectorPW ~0![~0,0,0,0,1!. This model is
the one defined by Dhar and Ramaswamy on a triangular

lattice @7#. We will consider also another model correspond-
ing to the vectorPW ~0![~0,0,0,1,0!. This model is equivalent
to the Dhar-Ramaswamy model on a square lattice. In fact,
one can obtain our triangular lattice by compressing a square
lattice in the diagonal direction and considering the same
microscopic rules, i.e., the transfer to the nearest-neighboring
sites in the preferential direction on the square lattice be-
comes the transferPf on the triangular lattice.

V. RENORMALIZATION EQUATIONS

In order to write the renormalization transformation it is
necessary to consider all the possible processes at the generic
scale (k) that contribute to a single process at the scale~k
11!. The RG transformation is given by the sum of the sta-
tistical weights of the dynamical processes allowed by the
spanning condition. A transfer processes satisfies the span-
ning condition if it starts from the central site or the one at
the top of the cell~top site!. The probability for a transfer
process to start in one of the two sites is proportional to the
probability for each site to receive energy by external addi-
tion or by transfer from other sites during an avalanche. Be-
cause only two sites external to the cell can transfer energy
to the central site the probability for a process to begin at the
central site isPc;Pl1P212Pf12P3 . In the same way one
can find the probabilityPt for a process to start at the top
site. Normalizing these probabilities with the condition
Pc1Pt51 one obtains

Pc5
Pl1P212Pf12P3

2Pl1Pd13P214Pf15P3
,

Pt5
Pl1Pd12P212Pf13P3

2Pl1Pd13P214Pf15P3
. ~14!

The statistical weight of a process has to include a factor that
represents the probability for obtaining the corresponding
configuration. The probability for a critical cell to be in a
configuration witha critical sites is

Wa~r!5
ra~12r!62a

Na(a52
6 ra~12r!62a , ~15!

FIG. 4. Five different ways for the energy transfer. Their prob-
abilities correspond to the five components of the vectorPW .

FIG. 5. Six sites~in black! that constitute the so-called apparent
cell, i.e., the cell including all the sites involved in the process of
energy transfer from a four-site cell. Arrows indicate an energy
transfer process that involves a site external to the four-site cell.
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whereNa is the number of configurations witha critical
sites. Denoting byva the index ranging over all configura-
tions witha critical sites, whereva51,...,Na , the probabil-
ity of a transfer process of kindx will be

Px
~k11!5(

a
Wa~r! (

wa51

Na

Px
~k11!~va!, ~16!

whereP x
(k11)~va! is the probability for a transfer of kindx

from the cellva at the scale~k11!, with the normalization
condition

(
x

(
va51

Na

Px
~k11!~va!5Na .

The probabilityP x
(k11)~va! is the sum over all the different

transfer processes, from the cellva at the scale (k), contrib-
uting to the transfer process of kindx at the scale~k11!:

Px
~k11!~va!5Pt

~k!(
i
Qi ,t
x,~k!~va!1Pc

~k!(
i
Qi ,c
x,~k!~va!,

~17!

whereQ i , j
x is the statistical weight of thei th process started

at thej th site, which contributes to anx process. The indices
in parentheses refer to the length scale, whilePt andPc are
the probabilities that the transfer process starts from the top
or the central site, respectively. In Fig. 6 an example is
shown of a transfer process that transfers energy to two
neighboring cells. Its weight is given by
Q i ,v

2,(k)5Pd
(k) 1

2P 2
(k)P 3

(k).
The number of processes that contribute to Eq.~16! is

large ~several thousands! so that it is impractical to find all
the configurations by hand. In order to find all the processes
at a certain scale that contribute to a simple process at a
higher scale we have proceeded as follows. A site can trans-
fer energy to up to three sites~the nearest neighbors in the
preferential direction!. The possibility for energy transfer is
represented by a binary bond that is one or zero depending
on whether or not it participated in the relaxation process. In
the apparent cell there are six sites and so we have eighteen
different bonds. Each relaxation process then corresponds to
a particular sequence of bits. In this way it is possible to
generate all the possible relaxation processes. Among all
these processes one has to choose the ones that contribute to

the renormalization equations. One has to discard all the pro-
cesses that do not correspond to dynamical processes~for
example, sequences that represent a relaxation of a stable
site! and to accept just the processes that fulfill the imposed
spanning condition. By implementing this algorithm one re-
produces all the processes that contribute to the renormaliza-
tion equations.

Equations~16! and~17! are the renormalization equations
for the dynamical variables. We have yet to find how the
configurational parameterr(k) is renormalized. This equation
will express the stationarity of the critical state. It is derived
from the following expression, which states the balance be-
tween the energy input to a cell and the energy flowing out
of it:

dE~k11!5r~k11!dE~k11!@P1
~k11!1Pd

~k11!

12~P2
~k11!1Pf

~k11!!13P3
~k11!#, ~18!

wheredE(k11) is the quantum of energy added to a cell at
the scale~k11!, i.e., the mean energy exchanged between
two cells at that scale. From the previous relation we easily
obtain

r~k11!5
1

Pl
~k11!1Pd

~k11!12~P2
~k11!1Pf

~k11!!13P3
~k11! .

~19!

Equation~19! provides, independently of the definition of
dE(k11), the renormalized density of critical sites at the scale
~k11!. Moreover, it couples dynamical parameters of the
system to the static one, creating a feedback between the
control parameterr(k) and the dynamics of the system. This
is the mechanism generating the self-criticality of the model.
The complete RG equations are then

Px
~k11!5(

a
Wa~r! (

va51

Na S Pt
~k!(

i
Qi ,t
x,~k!~va!

1Pc
~k!(

i
Qi ,c
x,~k!~va! D ,

~20!
r~k11!5@Pl

~k11!1Pd
~k11!12~P2

~k11!1Pf
~k11!!

13P3
~k11!#21.

Starting with an arbitrary initial condition~r~0!,PW ~0!!, we
can study the flow diagram and the fixed points just be iter-
ating the renormalization equations~20!. We found that the
system of equations has a stable fixed point~r* ,PW * !. In
Table I we show the evolution under scale transformation of
the parameters and the numerical values of the fixed point
parameters for the two models defined by the minimum scale
vectorsPW ~0![~0,0,0,0,1! and PW ~0![~0,0,0,1,0! for two arbi-
trary values ofr~0!. Both models evolve asymptotically to-
wards the same stable fixed point, which corresponds to the
same scale-invariant dynamics. This means that the two
models belong to the same universality class.

In addition, we checked that systems for which
P f

(0)1P 2
(0)1P 3

(0)Þ0 converge towards the same stable fixed
point, i.e., they belong to the same universality class. Sys-
tems for which P f

(0)1P 2(0)1P 3
(0)50 converge to some

FIG. 6. Example of one energy transfer process with statistical
weight equal to12PdP2P3 .
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other unstable fixed points. Let us consider, for example, the
system withPd

(0)51. This is a fixed point because the dy-
namical evolution cannot generate lateral energy transfers.
This fixed point is unstable: any deviation fromPd

(0)51
drives the system away from it.

VI. CALCULATION OF THE CRITICAL EXPONENTS

As we have seen in the previous sections, the fixed point
of our renormalization scheme has a completely attractive
nature. This implies that it is not possible to compute the
critical exponents by the standard method used in critical
phenomena. The calculation of the critical exponentst andz
is carried out using the fixed point dynamics, thus overcom-
ing the problem posed by the complete attractiveness of the
RG flow.

In Sec. II we have shown that in order to fully character-
ize the critical behavior of the system, it is necessary to
calculate three independent exponents, e.g.,D, the exponent
that describes how the area of an avalanche scales with its
linear dimension in the preferential direction; the avalanche
exponentt, and the dynamical exponentz.

Let us start with the calculation ofD. We have already
shown that, at the minimal scale, the two models with
PW ~0![~0,0,0,0,1! and PW ~0![~0,0,0,1,0! produce avalanches
whose area scales with an exponentD53

2. The reasoning that
leads toD53

2 in these models can be applied to any system
satisfyingP f

(0)1P 2
(0)1P 3

(0)Þ0 at any scale~k!. In particu-
lar, this holds for the scale-invariant dynamics corresponding
to the nontrivial fixed point~r* ,PW * ! ~Table I!.

As in @5#, for the calculation of the avalanche exponentt
we defineK as the probability that a relaxation process is
limited between the scales (k) and ~k11! and does not ex-
tend further:

K5
*a~k!

a~k11!

P~r !dr

*a~k!
` P~r !dr

. ~21!

By simple scaling arguments we get that

P~r !;r D~t21!21.

Inserting this expression in~21! we obtain

K5122~3/2!~12t!

and

t512
2 ln~12K !

3 ln 2
, ~22!

where we used the following value as the scale factor of our
coarse-grained cell:

a~k11!

a~k! 52. ~23!

K can expressed in terms of the scale-invariant dynamics as
the probability that at the scale~k! the energy is transferred
to stable cells:

K5~Pl*1Pd* !~12r* !1~Pf*1P2* !~12r* !2

1P3* ~12r* !3. ~24!

Using the fixed point parameters and inserting expression
~24! into ~22!, we get the value

t51.328,

in excellent agreement with the exact resultt54
3 obtained by

Dhar and Ramaswamy@7#.
The dynamical exponent links the linear extension of an

avalanche to the time needed for its evolution. As we already
pointed out, for directed models one considers the linear ex-
tension in the preferential direction

^t ~k!&;a~k!z,

where ^t (k)& is the average time it takes for a dynamical
process at the scale (k) to cross the cell. Comparing two
consecutive scales, one obtains

^t ~k11!&

^t ~k!&
5S a~k11!

a~k! D z52z, ~25!

so that

z5

ln
^t ~k11!&

^t ~k!&
ln 2

. ~26!

The calculation of the dynamical exponentz is performed
by the following procedure. A process that transfers energy
out of a cell at the length scale~k11! is composed of many

TABLE I. Iteration of the RG equations for the parameters of
two microscopic models@~a! with P3

~0!51 and ~b! with P f
(0)51#

corresponding toPW ~0![~0,0,0,0,1! andPW ~0![~0,0,0,1,0!.

(k) Pl Pd P2 Pf P3 r

~a!
0 0.000 0.000 0.000 0.000 1.000 0.900
1 0.000 0.000 0.003 0.000 0.997 0.334
2 0.000 0.506 0.259 0.000 0.235 0.578
3 0.035 0.342 0.307 0.007 0.308 0.518
` 0.058 0.308 0.319 0.012 0.303 0.516

~b!

0 0.000 0.000 0.000 1.000 0.000 0.400
1 0.144 0.000 0.056 0.028 0.772 0.380
2 0.028 0.370 0.290 0.005 0.306 0.524
3 0.049 0.327 0.305 0.010 0.309 0.517
` 0.058 0.308 0.319 0.012 0.303 0.516
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subprocesses at the scale (k). We denote byM i , j
x the number

of steps involved in thei th x coarse-grained process starting
at the j th site. Thus, at a scale~k11! the process character-
ized byM i , j

x runs in a time given by

t i , j
x 5Mi , j

x ^t ~k!&.

The average time at the length scale~k11! is a weighted
average of all the process timest i , j

x :

^t ~k11!&5^t ~k!&(
a,x

W~a!(
va

S Pt
~k!(

i
Qi ,t
x,~k!~va!Mi ,t

x

1Pc
~k!(

i
Qi ,c
x,~k!~va!Mi ,c

x D . ~27!

Inserting Eq.~27! into Eq. ~26! yields an expression for the
dynamical exponent

z5

lnF(
a,x

W~a!(
va

S Pt
~k!(

i
Qi ,t
x,~k!~va!Mi ,t

x 1Pc
~k!(

i
Qi ,c
x,~k!~va!Mi ,c

x D G
ln 2

. ~28!

Summing over all contributions gives

z51.001, ~29!

which is almost identical to the exact result. In fact, the front
of an avalanche moves at a constant rate of one unit per time
step in the preferential direction at any scale (k).

We stress that despite the good agreement, the differences
between the exact results and the results we obtained forz
and t are not due to rounding errors. Indeed, the renormal-
ization procedure we used to compute the critical exponents
is not an exact procedure: we have neglected, for example,
the next-nearest-neighbor energy transfer.

VII. CONCLUSION

In this paper we have presented a renormalization scheme
of a different type for the study of directed sandpile models.
This approach represents an application of the so-called dy-
namically driven renormalization group and it follows the
strategy used in@5# for the nondirected sandpile models. The
method consists of two steps: the identification of a suitable

parametrization of the static and dynamic properties of the
system and the coupling of the renormalization equations to
a condition that expresses the stationarity of the critical state.
In this way we obtain the RG transformations characterizing
the evolution of the system under a change of scale. This
method enables us to characterize the nature of the critical
state and its scale invariant dynamics.

As in the case of isotropic models@5# the RG transforma-
tion was found to have an attractive stable fixed point that
accounts for the self-critical character of these models. We
identified the universality classes of several models by study-
ing the basin of attraction of the fixed point. In addition, we
computed analytically the critical exponents and obtained
values that are in excellent agreement with the exact results
of Dhar and Ramaswamy@7#.
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