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Abstract. We introduce a renormalization scheme for forest-fire models in order to characterize
the nature of the critical state and its scale-invariant dynamics. We study one- and two-
dimensional models defining a characterization of the phase space that allows us to describe
the evolution of the dynamics under a scale transformation. We show the existence of a
relevant critical parameter associated with a repulsive fixed point in the phase space. From
the renormalization-group point of view these models are therefore critical in the usual sense,
because the fixed-point value of the control parameter is crucial in order to get criticality. This
general scheme allows us to calculate analytically the critical exponentν which describes the
approach to the critical point along the repulsive direction and the exponentτ that characterizes
the distribution of forest clusters at the critical point. We obtainν = 1.0, τ = 1.0 andν = 0.65,
τ = 1.16, respectively, for the one- and two-dimensional cases, in very good agreement with
exact and numerical results.

1. Introduction

The forest-fire model (FFM) [1, 2] has been introduced as a possible realization of self-
organized criticality (SOC) [3–7]. This term refers to the tendency of extended dynamical
systems to evolvespontaneouslyin a critical state characterized by spatial and temporal
self-similarity. From the point of view of ordinary critical phenomena these systems, in
contrast with equilibrium phase transitions, stay close to the critical point for a wide range
of the parameter values.

Many examples of systems showing SOC behaviour have been drawn in different fields:
geology, biology, economics, etc [8]. In order to illustrate the basic ideas of SOC, Bak and
co-workers [3] introduced the so-called sandpile model, a cellular automaton inspired by
the dynamics of avalanches in a pile of sand. Dropping sand slowly, grain by grain, on a
limited base, one reaches a situation in which the pile is critical, namely it has a critical
slope. This means that a further addition of sand will produce slidings of sand (avalanches)
that can be small or cover the entire size of the system. In this case the critical state is
characterized by scale-invariant distributions for the size and the lifetime of the avalanches.
This state represents an attractor for the dynamics and it is reached without the fine tuning of
any critical parameter. Other examples of SOC can be found in fractal growth phenomena,
such as diffusion-limited aggregation (DLA) [4] and the dielectric breakdown model (DBM)
[5] or models like invasion percolation (IP) [7]. These models evolve spontaneously into a
statistically stationary state with a self-similar structure.
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The forest-fire model was initially introduced by Baket al [1] as a toy model for
turbulence. The model is defined on a lattice in which each site can be occupied by a green
tree, a burning tree or by ashes. The dynamics contains the tree growth probabilityp and
the fire spreading to nearest neighbours. It was argued that this model shows self-organized
criticality in the limit p → 0, namely that the system evolves into a critical stationary state
independently of the initial conditions. Large-scale simulations [9, 10] show that the model
becomes more and more deterministic and develops spiral-shaped fire fronts. This model
is critical but with some trivial critical exponents.

For this reason, the original model was modified by Drossel and Schwabl [2] by
introducing an ignition parameterf , the lighting parameter. This parameter is the probability
that, during one time step, a tree without burning nearest neighbours becomes a burning
tree. In this case the system was supposed to exhibit self-organized criticality in the limit of
a double time scale separation. This means that the time scale over which a cluster is burned
is much smaller than the growth scale of the trees which, in turn, is much smaller than the
time scale over which a lightning event occurs. This time scale separation is expressed by
the double limit

f/p → 0 p → 0 . (1)

Usually the limitf/p → 0 is attributed to the existence of a slow driving of the system,
or, in other words, a time scale separation, also present in the definition of sandpile models.
In the FFM the parameterf/p directly affects the upper cut-off [11, 12] and seems to play,
in the language of ordinary critical phenomena, the role of a relevant parameter. In contrast
to sandpile models, it is not possible to consider the the FFM exactly at the critical point,
i.e. in a subspace without relevant critical parameters.

To address the study of critical growth phenomena, the fixed-scale transformation
approach to fractal growth [13] has been developed and recently we have introduced
a renormalization-group (RG) scheme of novel type to study sandpile models [14, 15].
This new method, which has been called a dynamically driven renormalization group
(DDRG) [16], is able to describe the self-organized critical state of sandpile models
by defining a characterization of the phase space in which it is possible to study the
renormalization of the dynamics under a change of scale. In addition the stationary condition
characterizes the driving of the system to its steady state. The presence of an attractive fixed
point, in a suitable phase space, clarifies the self-organized nature of these systems, at least
from the renormalization-group point of view. Finally, it is possible to estimate the critical
exponents analytically [14, 15]. It is worth stressing that the DDRG, although inspired by
the study of self-organized critical systems, represents a general method to approach non-
equilibrium critical systems with a stationary state and it allows us to study equilibrium
models at the critical point as well.

In this paper we follow the same ideas of [14, 17] in order to study the one- and
two-dimensional FFM including the ignition parameterf . The first step of the method
is the identification of a suitable phase space to characterize the stationary and dynamical
properties of the system. In this phase space we obtain the RG equations which link
the dynamical parameters at a generic scale 2b with those at scaleb. We then couple
these equations to a stationarity condition which provides the weight of the geometrical
configuration in the stationary state. This condition allows us to obtain the renormalized
stationary parameters which drive the system in the asymptotic steady state. Studying the
flow in the phase space of the RG equations, we find the existence of a repulsive fixed point
associated with a relevant critical parameter. This allows us to clarify the role of the critical
parametersθ andp, and the nature of the critical state. We evaluate the critical exponents for



Renormalization scheme for forest-fire models 2983

the one- and two-dimensional cases. We use different renormalization schemes of increasing
complexity, showing the convergence and stability of the method. The results are in good
agreement with exact and numerical results.

The outline of the paper is the following. In section 2 we recall the definition of the
model and describe the scaling laws characterizing the system; section 3 describes the choice
of a suitable set of parameters to characterize the stationary and dynamical properties of
the system. Section 4 is devoted to the analysis of the RG transformations in the one-
dimensional case. We study the flow of the parameters under a scale transformation and
compute the critical exponents analytically. In section 5 we apply the same procedure
of section 4 to the two-dimensional case. We implement the procedure for the 2× 2
and the 3× 3 cell schemes and report the calculation of the critical exponents for these
cases. The use of more refined calculation schemes allows us to improve the precision
of the results. In section 6 alternative schemes of calculation are discussed in order to
show that our renormalization scheme is consistent and gives reliable and stable results
with respect to the choice of different coarse-graining prescriptions: different spanning
condition, majority rules, lattice topologies, etc. Section 7 is devoted to the discussion of
the fixed-scale transformation approach for the estimate of the fractal dimension of the fire
clusters. Finally, in section 8 we summarize the results and draw the conclusions. Two
appendices complete the paper: in appendix A we report the weights of the configurations
used in the renormalization procedure in the two-dimensional case in the 2×2 cell scheme.
Appendix B reports the details of the 3× 3 renormalization calculation.

2. Forest-fire models

In this section we recall the definition of the model we are going to analyse. The model
we consider is a cellular automaton defined on ad-dimensional lattice where each site can
be found in one of the following configurations: (i) empty site without trees, (ii) green tree
and (iii) burning tree.

Starting with arbitrary initial conditions, at each time step the system is updated
according to the following dynamical rules:

(i) a burning tree becomes an empty site;
(ii) a green tree becomes a burning tree if at least one of its neighbours is burning;
(iii) a tree can grow with probabilityp in an empty site;
(iv) a tree without burning nearest neighbours becomes a burning tree with probabilityf .
After a short transient the system approaches a steady state whose properties depend

upon the values of the parametersp andf . It is useful to define the parameterθ = f/p

whose importance will be discussed later. For this model a critical behaviour, in the sense
of anomalous scaling laws, is observed in the double limitθ → 0 andp → 0. These two
limits describe a double time scale separation: trees grow fast compared to the occurrence of
lightning in the system and forest clusters burn down much faster than trees grow. In order
to describe the critical state of this system a set of critical exponents, whose denomination
is directly mutuated from that of sandpile models, can be defined. The critical state is
characterized by a power-law distribution

P(s) ∼ s−τ (2)

of the forest clusters (avalanches in the SOC terminology) ofs sites. Other important scaling
relations are the following:

s ∼ RD (3)
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R ∼ θ−ν (4)

where R is the mean cluster radius. These relations define the fractal dimensionD of
forest clusters, and the correlation length exponentν, respectively. Since this critical state
is reached independently of the initial conditions and for a wide range of parameter values,
it is called the self-organized critical state [2]. This statement is ambiguous, since the
requirement of a time scale separation seems to be crucial in order to get criticality and the
parameterθ seems an effective relevant parameter. In this respect the parameterθ would
play the same role as the reduced temperature in thermal phase transitions, in that it allows
criticality just for its critical valueθ = 0. It is worthwhile stressing how the definition of
self-organized criticality is very controversial. If, from the point of view of the RG approach,
one could think that SOC is related to the absence of relevant critical parameters, it is also
true that one could conceive a situation in which, enlarging the phase space of the sandpile,
some relevant parameters appear, e.g. the driving parameter. From this point of view the
only difference between sandpile models and forest-fire models would be that forest-fire
models cannot be studied in a subspace with no relevant parameters without destroying
the model itself. This reasoning can then be rephrased, saying that the peculiarity of the
SOC system consists in the fact that the control parameter is always related to the ratio
between two time scales with a critical value fixed at zero. In this situation the existence
of a time scale separation makes the system always very close to the critical point. The
self-organization would then be related to the widespread existence of systems with very
different time scales.

In the past few years a lot of work has been done in order to describe the critical
state of forest-fire models and to calculate the critical exponents. Numerical simulations
[11, 12, 18] showed that in the time scale separation regime the model seems to possess
a critical behaviour with the avalanche critical exponentτ given by τ ' 1 in d = 1 and
τ ' 1.15 in d = 2. For the exponentν, describing the divergency of the average cluster
radius asθ → 0, it has been found thatν ' 1 in d = 1 andν ' 0.58 in d = 2. The one-
dimensional result has been recovered exactly in [19]. Simulations were also performed in
higher dimensions [18, 20]. In the limitd → 6 the exponents approach those of mean-field
percolation.

In what follows we will show a renormalization scheme of novel type [17], already
applied to sandpile models [14, 15], which allows us to clarify the role of the critical
parametersθ andp and the nature of the critical state. In addition we are able to calculate
analytically the critical exponents characterizing the model ind = 1 andd = 2.

3. The renormalization scheme

The renormalization approach we present here is an example of the application of a
general method which has been introduced recently, the so-called dynamically driven
renormalization group [16]. This method, mainly developed for systems with a non-
equilibrium critical stationary state, is based on a real-space renormalization scheme
combined with the driving condition which, acting as a feedback on the renormalization
equations, characterizes the dynamical evolution to the stationary state. As already pointed
out, this method has been applied successfully to the case of sandpile models and also
equilibrium models, e.g. the Ising model, at the critical point can be studied in this
framework. This general scheme allows for the analytical calculation of scaling dimensions
and critical exponents.

In order to develop a renormalization scheme for forest-fire models we have first to
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define a suitable phase space in which the RG equations can be obtained. Letρ0, ρ1 and
ρ2 be, respectively, the mean densities of empty sites, green trees and burning trees in the
stationary state with the conditionρ0 + ρ1 + ρ2 = 1. Thus,ρ0, ρ1 and ρ2 also represent
the probabilities that a site is found in one of the three possible states. These probabilities
describe in full generality the stationary properties of the model for generic dimensionsd.
For the dynamical properties we will consider a phase space defined by the parametersp

andθ = f/p.
We can now extend the characterization of the stationary properties at a generic scaleb,

by consideringcoarse-grained variables. Independently of the dimensiond we can define
a density vector at the generic scaleb as

ρ(b) ≡ (ρ0(b), ρ1(b), ρ2(b)) . (5)

Independently of the minimal scale, a coarse-grained cell of sizeb is green if it is
spanned from left to right by a connected path of green sites at scaleb/2. A cell is empty
if it is not spanned by a connected path of green sites at the lower scale. Finally, a cell
is burning if it contains at least one burning tree at the lower scale. In this latter case
the spanning condition is not necessary because the fire spreads automatically to nearest-
neighbour sites.

In order to describe the dynamical properties at a generic scaleb we define the
parametersp(b) and θ(b). The first one represents the growth probability for a green
tree at the scaleb. The second one is given by the ratio betweenf (b), the probability that
a green tree of sizeb becomes a burning cell because of the arrival of a lightning event,
and p(b). We shall define our RG procedure in the phase space(p(b), θ(b),ρ(b)). The
parameterθ(b) is related to the time needed to burn an entire forest cluster at scaleb. In
particular, if we denote byT (ξ) the time needed to burn an entire cluster of characteristic
sizeξ , one has that

T (ξ) ∼ (f/p)−ν ′ ∼ θ−ν ′
(6)

with ν ′ = νz [20].
In the actual implementation of the RG scheme we implicitly consider the double time

scale separation expressed byf � p � 1. In fact, we will renormalize the tree growth
parameterp and the lightning parameterf in separate ways, assuming that they do not
affect each other since they act on very different time scales. In addition, one usually
considers the model in a further limit in which the time needed to burn an entire cluster of
dimensionξ is much smaller than the average time between two tree growths:

T (ξ) � 1/p . (7)

This condition corresponds to the requirement that the burning process is instantaneous with
respect to the processes of growth and lightning, and it is usually used in the simulations.
The advantage of this limit is that one can consider each fire as an isolated event: fires
triggered by different lightning events do not overlap, so that clusters destroyed by fire are
a well defined object.

In this paper we use the condition (7) in the implementation of the RG procedure.
This implies that the fire spreading is instantaneous with respect to the tree growth and
the lightning time scales. In this way we can consider the renormalization off and p

completely decoupled from the burning process. This procedure seems to be perfectly
adequate for the study of the critical behaviour of the parameterθ , which, being given by
the ratio betweenf andp, is not affected by the absolute time scales associated with each
of the two parameters.
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The condition (7) makes our RG approach suitable for describing what happens in the
region of the phase space(p, θ) described byp � θν ′

. On the other hand, the condition
(7) is not really necessary to implement the RG procedure. From [16] we know the most
general procedure for the one-dimensional case which, neglecting (7), allows us to study
the critical behaviour in all phase space consistent with the conditionsf � p � 1.

We discuss separately, for the one- and the two-dimensional case, the explicit form
of the RG equations and the coupling between the dynamical and stationary properties at
different scales.

4. Renormalization equations in one dimension

In this section we define the renormalization transformation for the one-dimensional case.
We use a cell-to-site transformation on the lattice in which each cell at the scale(k + 1)

is composed of two cells at the scale(k). In figure 1 we show the possible configurations
corresponding to empty or green cells at scale(k + 1). In one dimension a green cell at
scale(k + 1) is given by two green trees at scale(k).

There are three configurations of sites at scale(k) which give an empty cell at scale
(k + 1) (figure 1) denoted byα. Each configuration has a relative statistical weightWα

given by the probability to have the corresponding number of green and empty subcells:

W1 = W2 = ρ
(k)

1

ρ
(k)

0 + 2ρ
(k)

1

W3 = ρ
(k)

0

ρ
(k)

0 + 2ρ
(k)

1

.

(8)

In order to define a renormalization transformation we start with an empty or green cell
configuration at scale(k + 1) and we study how it evolves using the dynamical rules of the
model. Here we consider a transformation defined by the following rules:

(i) every series of tree growth processes at scale(k) that spans an empty cell at scale
(k + 1) is renormalized in the growth probabilityp at scale(k + 1);

(ii) every lightning process at scale(k) that affects a green cell at scale(k+1) contributes
to the renormalization of the lightning probabilityf .

The spanning rule implies that only tree growth processes extending over the size
of the new length scale contribute to the renormalized dynamics. Moreover, it ensures
the connectivity properties of the green sites in the renormalization procedure. Figure 2
illustrates the contributions to the renormalization of the growth probability by the
empty configuration denoted byα. By averaging over all the configurations with their

Figure 1. The possible configurations of sites at the scaleb(k) corresponding
to empty or green cells at the scaleb(k+1) in d = 1.
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Figure 2. Scheme of renormalization of the growth parameterp (up) and of the lightning
parameterf (down) in d = 1.

Figure 3. Phase space for the RG approach to the one-dimensional forest-
fire model. The shadowed region is not described by our RG approach.

corresponding weights we obtain the renormalization equation forp:

p(k+1) = W1p
(k) + W2p

(k) + W3(p
(k))2 . (9)

In the same way we can write the renormalization equation forf (figure 2):

f (k+1) = (f (k))2 + 2f (k)(1 − f (k)) . (10)

The renormalization equations written forp andθ are therefore given by

p(k+1) = (W1 + W2)p
(k) + W3(p

(k))2

θ(k+1) = f (k+1)/p(k+1) = θ(k)

(
2 − θ(k)p(k)

2W1 + W3p(k)

)
.

(11)

These renormalization equations are not yet closed because the statistical weightsWα are
a function of the density vectorρ(k). In fact, in order to describe thestationary critical stateit
is necessary to couple the dynamics to a stationarity condition that gives the renormalization
equations for the density vector. This scheme is similar to that used in [14].
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The stationarity condition can be obtained starting from the master equations for the
density vector in the mean-field regime by imposing the asymptotic stationary condition
(t → ∞) [18]:

ρ
(k)

0 = (1 − ρ
(k)

1 )a(k)/p(k)

ρ
(k)

1 = a(k)

θ (k)p(k) + 4a(k) − a(k)ρ
(k)

1 (2d − 1)

ρ
(k)

2 = (1 − ρ
(k)

1 )a(k)

(12)

where we defineda(k) = p(k)/(1+ p(k)), with the normalization conditionρ(k)

0 + ρ
(k)

1 + ρ
(k)

2
= 1.

The stationarity condition, summarized in (12), provides the renormalized density vector
at each scale(k + 1), and couples the dynamical properties to the stationary ones. It is
worth remarking that we do not determine the RG equations forρ from the coarse-graining
prescription. In fact, the stationary properties have to be evaluated considering the average
over many dynamical processes. Thus the densitiesρ are determined from the renormalized
dynamical description of the system, namely (12) with renormalized parameters.

Also note that the RG equations are written with the assumption of a double time scale
separation: fire spreading and tree growth are not interacting. This is expressed by the
consistency relationp � 1/T (ξ). Our RG approach is then suitable to describe what
happens in the region of phase space(p, θ) defined by the conditionp < θν ′

.
Given this scheme, we can thus find the fixed points of the renormalization

transformation by studying the flow diagram in phase space of the parameters(ρ, p, θ).
The RG equations (11) and (12) show, ford = 1, the fixed point,

p∗ = 0 θ∗ = 0 ρ∗ = (0, 1, 0) . (13)

A complete characterization of the fixed point is obtained by the RG equations linearized
aroundp∗, θ∗ andρ∗ which read as(

p′

θ ′

)
=


2ρ∗

1

1 + ρ∗
1

0

0
1 + ρ∗

1

ρ∗
1

 (
p

θ

)
. (14)

The eigenvalues of the previous equation are given byλ1 = 1.0 andλ2 = 2.0. There
is just one relevant scaling field that corresponds to the eigenvalue strictly greater than 1,
λ2 = dθ(k+1)/dθ(k). Therefore we have that the fixed point is repulsive in theθ direction,
which of course defines the relevant control parameter. Since the fixed point is repulsive in
the θ direction, we can determine the exponent of the clusters’ characteristic length by the
largest eigenvalueλ2, and we find

ν = log 2

logλ2
= 1.0 . (15)

This exponent describes the divergence of the correlation length byR ∼ θ−ν and it
recovers the exact result [19]. In this perspective the parameterθ = f/p plays the role of the
relevant critical parameter as the reduced temperature in the thermal phase transitions. For
each value ofθ , small but finite, the system shows an upper characteristic length in the cluster
distribution. Only forθ = 0 is the system critical and shows an infinite correlation length.

As long as the system is not exactly at the fixed point we have that the forest cluster
distribution is defined as follows:

P(s) = s−τ f

(
s

sc

)
(16)
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Figure 4. The possible configurations of sites at the scaleb(k) corresponding
to empty or green cells at the scaleb(k+1) in d = 2 and for the 2× 2 cell
scheme.

wheresc → ∞ at the critical point. The functionf (x) tends to a constant forx � 1 and
decreases exponentially forx � 1. Ford = 1 the avalanche distribution coincides with the
distribution for clusters of linear sizer and we can easily calculate the exponentτ . In fact,
we can use the scaling relationν = 1/(2− τ) [20] which gives the resultτ = 1, neglecting
logarithmic corrections ford = 1. It is worth noting that ford = 2 we can no longer use
this simple scheme, but we have to calculateτ using the approach shown in [14].

The calculation of the exponentz is also particularly simple in the one-dimensional
case. The dynamical exponent can be defined through the scaling relation linking time and
the linear extension of a fire spreading asT ∼ rz. Using the discretized length of our
scheme, the time scale of a burning process at scaleb(k+1) and one at scaleb(k) are related
in the asymptotic limit(k → ∞) by the relation

Tk+1

Tk

= 〈t〉 = 2z . (17)

The time scaling factor〈t〉 is the average number of burning processes at scaleb(k)

needed to have a fire of length scaleb(k+1). The only possible burning process on the
scaleb(k+1) results from the fire spreading in a green cell at the same scale. Therefore,
the number of burning sub-processes needed is〈t〉 = 2 and from (17) we obtain the result
z = 1. Consequently, we can also obtain the exponentν ′ which describes the range of
validity of our approach and characterizes the double scale separation present in these
systems. By substituting the value ofν andz in the expressionν ′ = νz we haveν ′ = 1.0.
This implies that our method is able to characterize, in the proximity of the fixed point, the
critical behaviour of the model in the lower half of the first quadrant of the (p–θ ) plane (see
figure 4).

It is interesting to note that our method recovers, in the one-dimensional case, the exact
results of the rigorous treatment of [19]. This is due to the relative simplicity of the one-
dimensional case, where few approximations are involved in the calculation. For instance,
the spanning condition is unique. This is not the case ind = 2, where the calculation is
much more complicated, and more refined schemes of renormalization are needed.

5. Renormalization equations in two dimensions

Here we apply our RG scheme to the forest-fire model in two dimensions, following the
same lines as previous sections. The formalism is heavier but only a few differences will
emerge with respect to the one-dimensional case.
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We consider a phase space described by the parametersp(k), θ(k) = f (k)/p(k) andρ(k)

at a generic scale(k) with b(k) = b02k. In this case the transformation cell-to-site is such
that, on the lattice, each cell at scaleb(k+1) is composed by four subcells at scaleb(k).

A cell at scale(k + 1) is consideredgreenif a spanning condition in one direction, say
the horizontal direction, is satisfied; a cell is thus green if a fire can span it entirely. On
the other hand if the spanning condition is not satisfied the cell isempty. Finally, a cell
that contains at least a burning subcell is consideredburning. Figure 4 shows the different
configurations at scale(k) which give rise to empty or green sites at scale(k + 1). The
relative weight of each configuration is given by the probability of having the corresponding
number of green and empty subcells

Wα(ρ) = �αρα
1 ρ4−α

0 (18)

whereα is the number of green subcells and�α is a normalization factor depending onα.
In practice we are approximating the non-equilibrium steady-state statistical weight of the
cells with the stationary average density of each configuration. Here we consider the site
configurations in the stationary state to be uncorrelated. In some sense this corresponds to a
sort of zero cumulant approximation for the stationary statistical distribution. On the other
hand, correlations among sites are mainly developed during the dynamical evolution, and
consequently, in our scheme correlations are considered in the renormalization equations
for the dynamics. For the sake of clarity, in the following we defineW e

α and W
g
α as the

relative weights of subcell configurations which give, at scale (k + 1) empty or green cells,
respectively. The explicit expression of the weightsW e

α andW
g
α is given in appendix A.

The rules to define the renormalization transformation are the same as given in section 4
for the one-dimensional case. Let us start by considering the simplest RG scheme; i.e. 2×2
cells with a left–right spanning condition.

In figure 5 we show the contributions to the renormalization ofp for empty sites at
scale (k + 1). For α = 2, starting with an empty cell at scale(k + 1), after an updating
step the cell will become green if at least one of the two empty subcells has become green.
This occurs with probability(p(k))2 and 2p(k)(1−p(k)), depending on, respectively, whether
both or only one subcell become green.

By summing these probabilities one obtains, for the configurationα = 2,

p
(k+1)

α=2 = p(k)(2 − p(k)) . (19)

In a similar way we can also write a renormalization equation for each configurationα,

Figure 5. Examples of renormalization of the growth parameterp in d = 2. The two possible
contributions of the configurationα = 2 (empty site at the scale(k + 1)).
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Figure 6. Examples of renormalization of the lightning parameterf in d = 2. The two possible
contributions of the configurationα = 2 (green tree at the scale(k + 1)).

and, finally averaging over all the configurations with their corresponding weights we obtain

p(k+1) =
2∑

α=0

W e
αp(k+1)

α (20)

with

p
(k+1)

0 = (p(k))2(2 − (p(k))2)

p
(k+1)

1 = p(k)(1 + p(k) − (p(k))2)

p
(k+1)

2 = p(k)(2 − p(k)) .

(21)

In an analogous way we can write the equations forf (k). Figure 6 shows one of the
contributions to the renormalization off . For the configurationα = 2 we have two possible
contributions depending on whether both or just one green subcell is hit by a lightning event.
The first case occurs with probability 2f (k)(1−f (k)), the latter with probability(f (k))2. By
summing these probabilities one obtains, for the configuration withα = 2,

f
(k+1)

α=2 = f (k)(2 − f (k)) . (22)

We can write a renormalization equation for each configurationα, and, averaging over
all the configurations with their corresponding weights we obtain

f (k+1) =
4∑

α=2

W g
αf (k+1)

α (23)

with

f
(k+1)

2 = f (k)(2 − f (k))

f
(k+1)

3 = f (k)(3 − 3f (k) + (f (k))2)

f
(k+1)

4 = f (k)(4 − 6f (k) + 4(f (k))2 − (f (k))3) .

(24)

From equations (19) and (23) it is possible to write down the RG equation forθ(k+1) as

θ(k+1) = f (k+1)

p(k+1)
=

α=4∑
α=2

W g
αf (k+1)

α

/α=2∑
α=0

W e
αp(k+1)

α . (25)
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Inserting equations (21) and (24) in (25) one obtains the explicit expression of the RG
equation forθ :

θ(k+1) = θ(k) A + Bθ(k)p(k) + C(θ(k)p(k))2 + D(θ(k)p(k))3

W e
0p(k)(2 − (p(k))2) + W e

1(1 + p(k) − (p(k))2) + W e
2(2 − p(k))

(26)

with A = 2W
g
2 + 3W

g
3 + 4W

g
4 , B = −(W

g

2 + 3W
g
3 + 6W

g
4 ), C = W

g
3 + 4W

g
4 andD = −W

g
4 .

In order to close the RG equations we have to couple, as we did in the one-dimensional
case, the dynamics to a stationarity condition that gives the renormalization equations for the
density vector. We use the same stationarity condition (12) but withd = 2. This provides
the renormalized density vector at scale(k + 1), and couples the dynamical properties to
the stationary ones.

By studying the flow diagram in the phase space of the parameters(ρ, p, θ), we find that
the RG equations show the fixed pointp∗ = 0, θ∗ = 0 and, following the same procedure
used in the one-dimensional case,ρ∗ = (

2
3, 1

3, 0
)
.

As in the one-dimensional case, we reduce ourselves to the subset of the phase space
(p, θ). In fact we can write the stationary densities as implicit functions ofp and θ and
we have that a typical matrix element in the linearized RG transformation reads as

dθ(k+1)

dθ(k)
= ∂θ(k+1)

∂θ (k)
+ ∂θ(k+1)

∂ρ
(k)

1

∂ρ
(k)

1

∂θ(k)
+ ∂θ(k+1)

∂ρ
(k)

0

∂ρ
(k)

0

∂θ(k)
. (27)

It is worth noting that in the proximity of the fixed point(p∗, θ∗, ρ∗) the derivatives
∂θ(k+1)/∂ρ

(k)

1 , ∂θ(k+1)/∂ρ
(k)

0 are equal to zero. This means that at the fixed point the
renormalization of the dynamical parameters is decoupled from the stationary properties
of the system. After a little algebra we obtain that

dθ(k+1)

dθ(k)

∣∣∣∣
θ∗,p∗,ρ∗

= 2W
g
2 + 3W

g
3 + 4W

g
4

W e
1 + 2W e

2

∣∣∣∣
ρ∗

' 2.6

dp(k+1)

dp(k)

∣∣∣∣
θ∗,p∗,ρ∗

= W e
1 + 2W e

2 l|ρ∗ ' 1.0

dp(k+1)

dθ(k)

∣∣∣∣
θ∗,p∗,ρ∗

= 0

dθ(k+1)

dp(k)

∣∣∣∣
θ∗,p∗,ρ∗

= 0

(28)

the linearized RG equations being(
p(k+1)

θ (k+1)

)
=

(
1.0 0
0 2.6

) (
p(k)

θ (k)

)
. (29)

As in the one-dimensional case, there is just one relevant scaling field that corresponds
to the eigenvalue larger than 1,λ2 = 2.6. Therefore, also in this case we can identify a
relevant parameter,θ , which allows criticality just for its critical valueθ∗ = 0, and which
defines a repulsive direction in the phase space.

For the exponentν, which describes the divergence of the correlation length, or what
is the same, the clusters’ characteristic lengthR ∼ θ−ν , we have:

ν = log 2

logλ2
= 0.73 (30)

to be compared with the valueν = 0.58 measured in [11, 12]. Also in this case we
have a situation analogous to ordinary critical phenomena and the system shows an upper
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Figure 7. Phase space of the RG approach to the two-dimensional forest-fire
model. The shadowed part is not described by our RG approach.

characteristic length in the cluster distribution for each finite value ofθ , i.e. criticality is
just for θ = 0.

The dynamical critical exponentz can be calculated along the lines shown for the one-
dimensional case. In this case we can also define the time scaling factor〈t〉 = 2z that links
the time scale of burning processes at two consecutive levels of coarse graining (Tk+1/Tk).
Note that〈t〉 is the average number of subprocesses at scale(k) necessary for the fire to
fulfil the spanning condition for a cell at scale(k + 1). In this case the calculation is
more complicated because the number of burning processes needed to have a fire on the
scale (k + 1) depends upon the starting configurations at the smaller scale. By using the
configuration of our RG scheme the above average can be written as

〈t〉 =
4∑

α=2

W g
α tα (31)

having considered thattα is the number of non-contemporary processes needed to burn a
green configurationα. It is easy to calculatetα for each green configuration of figure 4,
and by inserting the fixed-point parameters in the above equation we obtain the following
result:

z = log〈t〉
log 2

= 1.11. (32)

This value has to be compared withz ' 1.04 obtained in [20]. From the knowledge of
ν and z we can derive the exponentν ′ = 0.81 which gives the range of validity of our
approach. In two dimensions it is very interesting to note that very close to the fixed point
the double scale separation needed in the system is self-consistently verified in our approach
in almost the white phase space (p–θ ). In fact, in the limit θ → 0, p → 0 only the line
θ = 0 is not characterized correctly from our approach (see figure 7). This corresponds to
the deterministic forest fire model withf = 0.

The other independent exponentτ describing the distribution of fire spreading can be
obtained as follows. In this case the fire is represented by the clusters of connected sites
interested by a burning process. As in [14] we defineK as the probability that an active
relaxation process (i.e. fire) is limited between the scalesb(k) and b(k+1) and it does not
extend further:

K =
∫ b(k+1)

b(k)

P (r) dr

/ ∫ ∞

b(k)

P (r) dr (33)

whereP(r) dr is the probability of having a burning cluster with radius betweenr andr+dr.
In two dimensions with simple scaling arguments we can conclude that ifP(s) ∼ s−τ and
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s ∼ rD, thenP(r) ∼ r−D(τ−1)−1. Inserting this expression in (33) we obtain (ind = 2):

τ = 1 − log(1 − K)

D log 2
. (34)

We can thus use the scaling relationνD = 1/(2−τ) [20] to obtain a self-consistent relation
for the exponentτ . By inserting this scaling relation in the above equation forτ we obtain

τ = 1 − 2νS(K)

1 − νS(K)
(35)

whereS(K) = log(1 − K)/ log 2. In our caseK is the probability that at a generic scale
(k) all the nearest neighbours of a burning tree are empty and then

K = (1 − ρ
(k)

1 )4 . (36)

In the scale-invariant regime(ρ(k)

1 = ρ∗
1), K = 0.1975 and then, by using the valueν = 0.73

we obtain

τ = 1.19 (37)

D = 1.70. (38)

The exponentτ is in very good agreement with very accurate simulations [11, 12]. We
will see in section 6 that it is possible to use a different strategy to calculate these last
two exponents. In fact, from the knowledge of the fixed-point dynamics it is possible to
calculate independently the fractal dimension of clusters (via the FST method), and by using
the value obtained as an input in (35) we can evaluate the exponentτ . This strategy gives
a noticeable improvement in the results.

Figure 8. Two possible configurations of sites at the scaleb(k) corresponding
to an empty and a green cell, respectively, at the scaleb(k+1) in d = 2 and
for the 3× 3 cell scheme. The numbers 1, . . . , 9 show the convention that
denotes the different sites of the 3× 3 cell.

Table 1. In this table we summarize our results for the critical exponents obtained with the
different approximation schemes, compared with exact or experimental results.

ν z τ ν′ D

d = 1
RG 1.0 1.0 1.0 1.0 1.0
Exact resultsa 1.0 1.0 1.0 1.0 1.0

d = 2
RG 2× 2 0.73 1.11 1.19 0.81 1.7
RG 3× 3 0.65 1.02 1.17 0.66 1.9
RG + FST 3× 3 0.65 1.02 1.16 0.66 2.0
Numerical resultsb 0.58 1.04 1.15 0.6 1.95

a Exact results from [19].
b Numerical results from [11, 12].
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We summarize our results for the one- and two-dimensional cases in table 1. In the
table the values of the critical exponents calculated with our RG scheme are compared
with the best estimates from numerical simulations of the FFM model and it can be noted
that the agreement is very good. Nevertheless, it is worth noting that our results involve
approximations usually present in real space renormalization methods: spanning condition,
proliferation, etc. Therefore, it is possible to consider more complicated calculation schemes
in order to improve the numerical values.

The simple calculation we have shown does not take into account all the connectivity
properties which are at the heart of the forest-fire model. We can therefore improve the
results systematically by considering cells of increasing size. We used a 3× 3 cell-to-site
renormalization in which a cell composed of nine sites at a generic scale (k) is renormalized
to a single site at scale (k + 1). The rules that define the spanning condition and the
renormalization transformation are the same as given for the 2× 2 case. Figure 8 shows an
example of different cells with the corresponding coarse-grained site. The renormalization
equations can be formally written as

p(k+1) =
α=6∑
α=0

W e
αp(k+1)

α (39)

f (k+1) =
α=9∑
α=3

W g
αf (k+1)

α (40)

whereW e
α , W

g
α are the relative weights of the empty and green configurations, respectively.

The functionsp(k+1)
α andf (k+1)

α are derived by looking at the contribution of each starting
configuration to the renormalization equations. The explicit evaluation of the above
equations is very long and the calculation is shown in appendix B.

Once the explicit form of the RG equations is obtained we can study the flow diagram
in the phase space along the same lines as the 2×2 scheme. It turns out that in this case also
the RG transformation shows the fixed pointp∗ = 0, θ∗ = 0. We still find just one relevant
scaling field whose corresponding eigenvalue isλ2 = 5.38, and we therefore conclude that
θ is a relevant control parameter which allows criticality just for its critical valueθ = 0.
The exponentν governing the divergence of the correlation length is

ν = log 3

logλ2
= 0.65 (41)

showing that the numerical result converges to the correct value with a refined
renormalization scheme. The calculation of the dynamic critical exponentz is rather
laborious because it requires knowledge of all the possible fire spreading processes for
each starting green cell. The detailed calculation is worked out in appendix B and we just
report the final result

z = 1.02. (42)

This result is in very good agreement with the numerical resultz = 1.04, and suggests that
the exact value is converging toz = 1.0. It is straightforward to calculate the other critical
exponents by using the equations obtained previously:

ν ′ = 0.66 τ = 1.17 D = 1.9 . (43)

The results for the whole set of critical exponents are summarized in table 1. As can be
seen, there is a consistent improvement in the numerical values obtained for the critical
exponents. Moreover, it is important to note that the present general discussion about the
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critical nature of the FFM is not affected by the approximations involved in our scheme.
The existence of a relevant scaling field and the general structure of the flow diagram is, in
fact, stable with different approximation schemes, even though a more refined calculation
leads systematically to an improvement of the numerical values obtained for the critical
exponents.

6. Alternative renormalization schemes

Real space renormalization groups are, in general, affected by the coarse-graining
prescriptions. For instance, one can choose different spanning conditions, majority rules,
lattice topologies, etc.

In order to prove that our renormalization scheme is consistent and gives reliable and
stable results, we implemented different calculation schemes. In the previous sections we
have been concerned with a cell-to-site renormalization transformation with the left–right
spanning condition. The simplest generalization is to consider a double-spanning condition,
i.e. the cell has to be spanned from left to rightand from top to bottom. Another possible
choice is a left-to-rightor top-to-bottom spanning condition. Both these approximations
and the one shown in the previous sections have to yield the same results for large cell
calculations. We observed, in fact, that, repeating the 2× 2 and the 3× 3 calculations
with the above spanning prescriptions, the numerical results converge to the values given
by computer simulations. More importantly, the general features of the flow diagram in the
phase space are robust with respect to the different approximations.

The FFM has so far been thought of as a site model. Of course it can be easily
generalized to a bond version. In fact, the model can be defined in the same way as in the
site case but with state variables associated to the bonds of a lattice. We therefore have that
each bond can be empty, green or burning, and the dynamical rules governing the evolution
of the system are the usual ones. The value of the critical exponents should be the same as
for the site version of the model, as requested by universality.

Unfortunately, to our knowledge, there are no numerical simulations on bond FFM.
Nevertheless, a renormalization-group treatment can be formulated along lines similar to
those used for the site case.

We used a cell-to-bond transformation on the square lattice, in which each cell at scale
b is formed by five bonds at scaleb/2 (see figure 9).

Figure 9. Scheme of the cell-to-bond transformation on a square lattice.

In this situation the spanning condition is a very natural one: the cell must be spanned
from top to bottom and no other definitions are allowed. The bond topology, in fact, is the
best one to take into account the connectivity properties of the model. In this case the results
are in good agreement with numerical simulations and even for the 2× 2 case we obtain
results with a precision comparable with the results of the 3× 3 cell-to-site calculation (for
instanceν = 0.63).
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7. The fractal dimension of the fire clusters

In this section we want to show a different strategy of calculation of the cluster fractal
dimension. Instead of using the scaling relation of section 5, we determine the fractal
dimension independently, and we use the obtained value as an input for the calculation
of τ .

In order to calculate the exponentD independently we use the fixed-scale transformation
(FST) approach. This method focuses on the dynamics at a given scale and on accurately
computing the correlations. The use of scale-invariant growth rules allows the generalization
of these correlations to coarse-grained cells of any size and then to obtain the fractal
dimension. The starting point of the FST method is the identification of the elementary
configurations of the nearest-neighbour pair correlation (for details see [13]). In this respect
it is convenient to consider correlations on a line perpendicular to the local growth direction.
In two dimensions there are two types of different configuration: type 1 occurring with
probabilityC1, consisting of an occupied site (black) and an empty one (white), and type 2,
occurring with probabilityC2, with both sites occupied. The probability distribution(C1, C2)

can be simply related to the fractal dimensionD of the structure by [13]

D = 1 + log(C∗
1 + 2C∗

2)

log 2
(44)

with (C∗
1, C∗

2) representing the fixed point of the iterative transformation that links the
probability distribution(C1, C2) of a given intersection with the distribution of another
intersection at the same scale but translated in the growth direction. The fixed point reflects
the translational invariance of the structure. The matrix elementsMi,j of the transformation
represent the conditional probability that a given configurationi will be followed, in the
growth direction, by a configurationj . The fractal dimension can also be written in the
form

D = 1 +
log

2M1,2 + M2,1

M1,2 + M2,1

log 2
. (45)

In this perspective FST is able to distinguish between fractal and non-fractal structures.
In fact, if the matrix elementM1,1 = 0 (and consequentlyM2,1 = 0) the corresponding
structure is compact, i.e. the fractal dimension is equal to 2. In fact, in this case, the growth
process does not produce holes at any scale. In the case of the forest-fire model we are
going to analyse theM1,1 matrix element in order to determine whether the fire clusters
are compact or not. In order to do that we have to interpret the birth of a fire cluster as a
growth process.

As we have already stressed, the critical point is characterized by a double separation
of time scales. This means that each fire triggered by individual lightning does not overlap
with other fires, thus clusters destroyed by fire are well defined objects. Therefore, the
time scale separation regime assures that no lightning will strike during the growth of the
cluster. When a site of the fire cluster is struck by lightning the entire clusters will burn in
a very short time (compared to 1/p). Looking at figure 10(a), we consider the conditional
probabilityM1,1 that a configuration of type 1 is followed by another configuration of type 1.
We consider open boundary conditions outside the growth column and we indicate with a
white square a site not yet explored by the growth process. A white circle indicates an
empty site. To first order the contribution toM1,1 will be given by the probability that
site 2 is empty, conditional on the fact that the growth process has to take place. Indicating
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Figure 10. Scheme for the first- (a) and the second-order (b) contributions
to the matrix elementM1,1 in the FST approach.

with 0 = ρ1 + pρ0 the probability that a site is occupied at a certain time, one has

M I
1,1 = 0(1 − 0)

20(1 − 0) + 02
. (46)

where the denominator indicates the probability that the growth process takes place. At
second orderM II

1,1 will be given by the probability that site 3, which after the first step
is empty, does not grow, conditional on the fact that the growth process takes place (see
figure 10(b)). So we have

M II
1,1 = (1 − p)(20(1 − 0) + 02)

p + (1 − p)(20(1 − 0) + 02)
M I

1,1 (47)

which can be written in the short form

M II
1,1 = M I

1,1(1 − p)
1

1 + p((1 − A2)/A2)
(48)

whereA2 = 20(1 − 0) + 02 with A2 < 1. Iterating this procedure one can easily find

MN
1,1 = M I

1,1

N∏
n=2

(1 − p)
1

1 + p((1 − An)/An)
(49)

where theAn are the terms appearing at each order in the expression corresponding to (48).
We then have

MN
1,1 < M I

1,1(1 − p)N−1 (50)

and in the limitN → ∞ one obtains

lim
N→∞

MN
1,1 = 0 (51)

for every small but finite value ofp. We have, in fact, to perform the limitN → ∞ and
then the limitp → 0. The fractal dimension of the fire clusters then tends, in the limit
N → ∞, to 2 (see equation (45)). The convergence as a function of the order of the process
considered is slow, i.e. logarithmic, and we getD = 2 just at infinite order.

We can use this result in the calculation of the exponentτ . By substitutingD = 2 in
equation (35) we obtain

τ = 1 − log(1 − K)

2 log 2
(52)

and using the fixed-point value forK we finally have

τ = 1.16. (53)

This value is in excellent agreement with numerical simulations, showing that the
independent calculation of the fractal dimension leads to a noticeable improvement in the
result.
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8. Conclusions

In this paper we have shown a renormalization approach to the study of the critical state
of forest-fire models. This approach represents an application of the dynamically driven
renormalization group [16] and it follows the strategy used in [14] for sandpile models.
The method is based on the following steps: first, we define the proper phase space with
parameters that characterize the dynamical and stationary properties of the model. In this
space, by coupling the renormalization of the dynamics to a stationary condition, i.e. the
driving, we obtain the RG transformations, characterizing the evolution of the system under
a scale change. By studying the flow diagram in the phase space we stress the presence
of a repulsive fixed point for the RG equations, which corresponds to the existence of the
relevant critical parameterθ .

This means that the FFM is critical just along the lineθ = 0 of the phase space,θ being
equivalent to the reduced temperature in the thermal phase transition. In other wordsθ is
the control parameter of the model, and the critical state is reached only by a fine tuning of
θ to its critical value.

In contrast to sandpile models, in fact, it is impossible to consider the FFM exactly at
the critical point, i.e. in a subspace without relevant parameters. However, in both cases
one can say that the critical state is reached just in the condition of a time scale separation.
In the case of sandpile models this condition is hidden in the definition of the models but
one can figure out a wider phase space with a relevant critical parameter, e.g. the driving
parameter.

With the present approach it is therefore possible to clarify the role of the critical
parametersθ andp and the nature of the critical state. In addition, we are able to compute
analytically the critical exponents characterizing the model ind = 1 andd = 2. Finally, it
is important to note that the above general discussion is not affected by the approximations
involved in the calculation scheme. Thus, we can introduce a naturally more refined RG
scheme (larger cells, spanning condition, etc) in order to improve the values obtained for
the critical exponents.
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Appendix A

The weights of the configurations of empty or green subcells at scale(k) corresponding,
respectively, to empty or green cells at scale(k + 1) in d = 2 (figure 4) are given by

W e
0 = �eρ4

0

W e
1 = �e4ρ3

0ρ1

W e
2 = �e4ρ2

0ρ2
1

(A1)

with

(�e)−1 = ρ2
0(ρ2

0 + 4ρ2
1 + 4ρ0ρ1) (A2)
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and

W
g
2 = �g2ρ2

0ρ2
1

W
g
3 = �g4ρ0ρ

3
1

W
g
4 = �gρ4

1

(A3)

with

(�g)−1 = ρ2
1(ρ2

1 + 2ρ2
0 + 4ρ0ρ1) . (A4)

The normalization conditions are obtained by requiring that the sum of the weights for
configurations corresponding to an empty cell at scale(k + 1) (and analogously to a green
cell) is 1. This condition is necessary in that, when we write down the renormalization
equations, i.e. forp(k), we are looking for the conditional probability that, given an empty
configuration at scale(k + 1), it becomes a green configuration at the same scale.

Appendix B

In this section we show in detail a cell-to-site renormalization scheme in which a cell of
3 × 3 sites at a generic scale(k) is renormalized in a single site at the scale(k + 1).

A cell at scale(k + 1) is consideredgreen if a fire can pass through the entire cell
spanning it in the horizontal direction. If the spanning condition is not satisfied the cell is
empty. Finally, a green cell that contains at least one burning subcell is consideredburning.
Figure 8 shows an example of three kinds of site. We indicate withα the number of the
green cells at the scale(k) which compose a cell at the scale(k +1). In table B1 we report,
as a function of the parameterα, the total number of cellsNα at the scale(k +1) composed
by α green subcells at the scale(k), the numberNg

α of green cells and the numberNe
α of

empty ones. The relative weight of each configuration is given by the probability of having
the corresponding number of green and empty subcells

W g
α (ρ) = ρα(1 − ρ)9−α/�g

W e
α(ρ) = ρα(1 − ρ)9−α/�e

(B1)

Table B1. Number of configurationsN(α) of kind α versusα in the 3× 3 cell renormalization
scheme, the numberNg

α of green cells and the numberNe
α of empty ones.

α N(α) Ng(α) Ne(α)

0 1 0 1
1 9 0 9
2 36 0 36
3 84 3 81
4 126 22 104
5 126 59 67
6 84 67 17
7 36 36 0
8 9 9 0
9 1 1 0
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with the normalization factors:

�g = 1/39

[ ∑
α

2αNg
α

]
�e = 1/39

[ ∑
α

29−αNe
α

]
.

(B2)

As in the 2× 2 case we consider the site configurations in the stationary state
uncorrelated. The rules to define the renormalization transformation are the same given
for the previous cases. The renormalization equation for the parameterp can be formally
written in the form (39) that we rewrite here for the sake of clarity:

p(k+1) =
6∑

α=0

W e
αp(k+1)

α (B3)

with

p(k+1)
α =

Ne
α∑

i=1

5α
i (p(k)) . (B4)

Analogously one can write the corresponding equations (40) forf as

f (k+1) =
9∑

α=3

W g
αf (k+1)

α (B5)

with

f (k+1)
α =

N
g
α∑

j=1

8α
j (f (k)) . (B6)

We introduce the functions5α
i and 8α

j which represent the unknown parts of the
renormalization equations; they are derived considering the contribution of each single
configuration (green or empty) to the renormalization equations. The whole operation is
long and tedious.

For sake of simplicity we will report just the expressions of the contributions linear in
p(k) and in f (k). These terms are the only ones that contribute to the matrix elements of
the transformation linearized around the fixed point, and, thus, the only ones that contribute
to the calculation of the critical exponents describing the approach to the critical point. In
fact it turns out that the renormalization equations present, also in this case, the fixed point

p∗ = 0 θ∗ = 0 . (B7)

We can then cast equations (B4) and (B6) in the form

p(k+1)
α = p(k)

∑
i

nα
i + O(p(k)2

) i = 1, Ne
α

f (k+1)
α = f (k)

∑
j

mα
j + O(f (k)2

) j = 1, Ng
α

(B8)

and equations (B4) and (B6) in the form

p(k+1) = p(k)

[∑
α

W e
α

Ne
α∑
i

nα
i

]
+ O(p(k)2

)

f (k+1) = f (k)

[∑
α

W g
α

N
g
α∑

j

mα
j

]
+ O(f (k)2

) .

(B9)
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Figure B1. Two examples of contributions to the renormalization ofp in the 3×3 cell scheme.

In the previous equationsnα
i andmα

j , indicate, respectively, the coefficients, which take
integer values, of the first-order contribution to the renormalization ofp andf . For the sake
of clarity we show in figure B1 two examples of the contributions to the renormalization
of p. In figure B1(a) the contribution tonα

i with α = 3 is one in that there is just one
possibility that can lead to the growth at scale(k + 1) in the starting configuration by the
growth of just one tree at scale(k). In figure B1(b) there are three different processes that
contribute to the growth of the starting configuration at scale(k + 1) and the corresponding
nα

i is three.
Starting from (B9) it is possible to write the renormalization equation forθ :

θ(k+1) = f (k+1)

p(k+1)
= θ(k)

[∑
α W

g
α

∑N
g
α

j mα
j

]
+ f (k) [· · ·][∑

α W e
α

∑Ne
α

i nα
i

]
+ p(k) [· · ·]

(B10)

where the [· · ·] indicate the higher-order contributions to the renormalization ofp andf .
As in the 2× 2 scheme we close the renormalization equations by coupling to them the

stationarity condition (12) which provides the renormalized density vector at scale(k + 1)

and it couples the dynamical properties to the stationary ones. The fixed point, as in the
2 × 2 scheme, is given byρ∗ = (

2
3, 1

3, 0
)
.

Let us pass to the calculation of the critical exponents in this new scheme. Along the
same lines as the 2× 2 scheme, we get

dθ(k+1)

dθ(k)

∣∣∣∣
θ∗,p∗,ρ∗

=
∑

α W
g
α

∑N
g
α

j mα
j∑

α W e
α

∑Ne
α

i nα
i

∣∣∣∣
ρ∗

' 5.38

dp(k+1)

dp(k)

∣∣∣∣
θ∗,p∗,ρ∗

=
∑

α

W e
α

Ne
α∑
i

nα
i

∣∣∣∣
ρ∗

' 0.85

dp(k+1)

dθ(k)

∣∣∣∣
θ∗,p∗,ρ∗

= 0

dθ(k+1)

dp(k)

∣∣∣∣
θ∗,p∗,ρ∗

= 0 .

(B11)

We still find just one relevant scaling field that corresponds to the eigenvalue greater
than one,λ2 = 5.38. Therefore, in this case also we can identify a relevant parameter,
θ , which allows criticality just for its critical valueθ∗ = 0, and which defines a repulsive
direction in the phase space.

By using the relevant eigenvalue we obtain that the characteristic length exponent is
ν = 0.65. This result shows that the enhanced method, which uses 3× 3 cells, allows us to
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improve the accuracy of our calculation (compare the resultν = 0.73 obtained in the 2× 2
scheme) and it gives an indication of the systematic nature of the approach.

The other independent critical exponent is the dynamical exponentz. Its calculation in
the 3× 3 scheme is rather laborious in that, for each configuration of typeα, we have to
take into account all the possible processes by which the fire can span the green cell.

The z exponent in this case is defined, in the asymptotic limitk → ∞, by the ratio

T (k+1)

T (k)
= 3z (B12)

whereT (k) is the average time of a dynamical process (fire) at scale(k). The time scale
T (k+1) can be obtained as a function of the time scaleT (k) from the RG equations. In fact
the renormalized dynamical process is given by the weighted average series of subprocesses
at scale(k), whose time scale is given byT (k). We therefore have

T (k+1) = 〈t〉T (k) (B13)

where〈t〉 is the subprocesses at scale(k) needed to have a relaxation process at scale(k+1).
In our scheme we have

〈t〉 =
∑

α

W g
α

N
g
α∑

h=1

〈τh〉α (B14)

where〈τh〉α is the average number of subprocesses in which thehth configuration of type
α burns down. In the calculation of the elements〈τh〉α we have to take into account that a
relaxation process (a fire) can start from any of the trees at scale(k) which belongs to the
connected cluster that allows the spanning rule to be satisfied. Figure B2 shows an example
of the calculation of〈τh〉α in a simple case.

Figure B2. Example of the calculation of a contribution〈τh〉α in the 3× 3 cell scheme.

By comparing (B13) and (B14) we obtain〈t〉 = 3z and then

z = log
∑

α W
g
α

∑N
g
α

h=1〈τh〉α
log 3

= 1.02. (B15)
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Other exponents can easily be evaluated along the lines shown for the 2× 2 case, and the
results are discussed in section 5.
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