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We introduce the general formulation of a renormalization method suitable to study the crit
properties of nonequilibrium systems with steady states: the dynamically driven renormalization gr
We renormalize the time evolution operator by computing the rescaled time transition rate betw
coarse grained states. The obtained renormalization equations are coupled to a stationarity con
which provides the approximate nonequilibrium statistical weights of steady-state configurations t
used in the calculations. In this way we are able to write recursion relations for the parameter evol
under scale change, from which we can extract numerical values for the critical exponents. This ge
framework allows the systematic analysis of several models showing self-organized criticality in te
of usual concepts of phase transitions and critical phenomena. [S0031-9007(96)01709-7]
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In the last decade nonequilibrium critical phenomen
have attracted a wide interest in statistical physics. Cr
cal systems are characterized by the absence of a cha
teristic lengthscale, strong fluctuations, and nonanalytic
of the correlation functions. Examples of this behavio
can be found in phase transitions [1–3], self-organiz
critical (SOC) systems [4], fractal growth [5], and a vas
class of complex systems [6]. The major source of diffi
culties in the study of nonequilibrium critical phenomen
[3,7] lies in the absence of a general criterion, like th
use of the Gibbs distribution in equilibrium systems, t
assign an ensemble statistical measure to a particular c
figuration of the system. The probability distribution i
instead a time dependent solution of a master equati
which only in some particular cases becomes stationary
the long time limit.

In this Letter we present the general formalism of
real space dynamical renormalization group (RG) sche
for systems with a nonequilibrium critical steady stat
the dynamically driven renormalization group (DDRG
The method combines the renormalization of the tim
evolution operator with a stationarity condition which
allows the calculation of the approximate steady-sta
configurations probability distribution. This coupling act
at each coarse graining step and therefore represen
driving for the renormalization group equations. For SO
systems [8–10], the DDRG allows us to derive in
broader framework previous RG schemes [11–13] and
formulate a more systematic approach. Here we show
explicit application of the DDRG to the forest-fire mode
(FFM) [9,10], which we can now study in the whole
parameters space. Possible applications of the DDR
are not restricted to SOC models: The method can
used to study other equilibrium or nonequilibrium critica
phenomena such as driven diffusive systems [2,3], whi
to our knowledge have never been approached by r
space RG methods.
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We consider discrete lattice models on ad-dimensional
lattice. To each sitei is associated a variablesi ,
which can assumeq different values (si  0, 1, . . . , q).
A complete sets ; hsij of lattice variables specifies
a configuration of the system. We defineksjT smdjs0l
as the transition rate from a configurations0 to a
configurations in a time stept as a function of a set
of parametersm  hmij. The time dependent probability
distribution Pss, td for the configurations of the system
obeys the following master equation (ME):

Pss, t0 1 td 
X
hs0j

ksjTsmdjs0lPss0, t0d . (1)

The explicit solution of the master equation is in gene
not available, but we can extract the critical properties
the model by a renormalization group analysis. We coa
grain the system by rescaling lengths and time accord
to the transformationx °! bx and t °! bzt. The
renormalization transformation is constructed through
operatorRsS, sd that introduces a set of coarse graine
variables S ; hSij and rescales the lengths of th
system [14]. In general,R is a projection operator
with the propertiesRsS, sd $ 0 for any hSij, hsij,
and

P
hSj RsS, sd  1. These properties preserve th

normalization condition of the renormalized distributio
The explicit form of the operatorR is defined case by
case in the various applications of the method. Usua
it corresponds to a block transformation in which lattic
sites are grouped together in a super-site that defi
the renormalized variablesSi by means of a majority or
spanning rule.

We subdivide the time step in intervals of the unita
time scale (t0  0) obtaining the coarse graining of th
system as follows:

P0sS, t0d 
X
hsj

RsS, sd
X
hs0j

ksjTbz

smdjs0lPss0, 0d , (2)
© 1996 The American Physical Society
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where we have included the application of the opera
R and t0  bzt. The meaning ofksjTbz smdjs0l has to
be defined explicitly: The simplest possibility isbz 
N where N is an integer number, andT N denotes the
application of the dynamical operatorN times. In general,
since we are dealing with a discrete time evolution w
have to considerT bz

as a convolution over differen
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paths, chosen by an appropriate condition. The deta
definition of the effective operatorTbz

is reported in
Ref. [15]. By multiplying and dividing each term o
Eq. (2) byP0sS0, 0d 

P
hs0j RsS0, s0dPss0, 0d and using

the properties of the operatorR, we get, after some
algebra,
P0sS, t0d 
X
hS0j

"P
hs0j

P
hsj RsS0, s0dRsS, sd ksjTbz smdjs0lPss0, 0dP

hs0j RsS0, s0dPss0, 0d

#
P0sS0, 0d , (3)
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),
which finally identifies the renormalized dynamical oper
tor kSjT 0jS0l. In other words the new dynamical opera
tor T 0 is the sum over all the dynamical paths ofbz steps
that from a starting configurationhs0

i j lead to a configura-
tion hsij, which renormalize, respectively, inhS0

i j andhSij.
The sum is weighted by the normalized statistical distrib
tion of each configuration.

We apply this scheme to systems with a steady st
described by a stationary distributionPss, t °! `d 
W ssd. For equilibrium systems the stationary distribu
tion has the Gibbs formW ssd , expf2bHssdg, where
Hssd is the Hamiltonian. There is not such a gener
criterion for nonequilibrium dynamical systems, therefo
we have developed an approximate method to evalu
the stationary distribution to be used in the calculation
the renormalized master equation. The simplest appr
imation considers only the incoherent part of the statio
ary distribution which does not include correlations an
can therefore be factorized. For systems characterized
q-state variables it has the form

W sidssd 
Y

i

krsi l , (4)
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wherekrkl is the average density of sites in thek state.
In this way, we have approximated the probability of ea
configurationhsij as the product measure of the mea
field probability to have a statesi in each corresponding
site. The values of the densitieshkrklj as a function of the
parametersm are obtained by solving appropriate mea
field equations in the long time limit. These equatio
have the form of a stationarity condition

≠

≠t
hkrklj  Smshkrkljd  0 , (5)

where the operatorSm describes the evolution of the
system as a function of the dynamical parameters defi
above. Time independent solutions of Eq. (5) will b
referred to as “steady states,” although we should ke
in mind that those are only the average states of
ensemble [16]. In ordinary statistical systems, Eq. (
represents the thermodynamic equilibrium condition. F
driven dynamical systems, it describes thedriving of the
system to the nonequilibrium steady state, by means o
balance condition.

By inserting this approximate distribution in Eq. (3
we obtain the renormalized dynamical operator
kSjT 0smdjS0l 

P
hs0j

P
hsj RsS0, s0dRsS, sd ksjTbz smdjs0l

Q
ikrs

0
i
lP

hs0j RsS0, s0d
Q

ikrs
0
i
l

, (6)
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where the densities are calculated at each coarse grai
step from the stationary condition [Eq. (5)] with th
corresponding renormalized dynamical parametershmj.
Since in this framework Eq. (5) drives the RG equatio
acting as a feedback on the scale transformation, we
it the driving condition.

Equations (5) and (6) are the basic renormalizati
equations from which the desired recursion relations a
obtained. Imposing that the renormalized operatorT 0

has the same functional form of the operatorT , i.e.,
T 0smd  T sm0d, we obtain the rescaled parameter setm0 
fsmd. This implies that the renormalized single tim
distribution P0sS, t0d has the same functional form o
the original distributionPss, td. The critical behavior
of the model is obtained by studying the fixed poin
mp  fsmpd. Since we are dealing with discrete evolutio
operatorsT , we define the time scaling factorbz as the
ng

ll

e

average number of steps we apply the operatorT in
order to obtain thatT 0smd  Tsm0d for the coarse grained
system. In this way we obtain a time recursion relati
t0  gsmdt, or equivalentlybz  gsmd, from which it
is possible to calculate the dynamical critical expone
z  ln gsmpdy ln b. In this form of the DDRG, we take
into account only the uncorrelated part of the stead
state probability distribution. The results obtained are
trivial because correlations in the systems are conside
in the dynamical renormalization of the operatorT , that
given a starting configuration traces all the possible pa
leading to the renormalized final configuration. Moreov
geometrical correlations are treated by the operatorR
that maps the system by means of spanning conditi
or majority rules. The renormalized uncorrelated part
the stationary distribution is evaluated from the stationa
condition with renormalized parameters, thus providing
4561
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effective treatment of correlations. One can then impro
the results by including higher order contributions
the unknown stationary distributionWssd using cluster
variation methods [17]. Naturally the above scheme
also be applied to equilibrium critical phenomena, wh
the driving condition is represented by the equilibriu
mean field equations [15].

The DDRG is a useful tool to study the critica
properties of SOC systems. In fact, these systems ev
spontaneously in a scale invariant stationary state.
forest-fire model is a simple automaton which has be
introduced by Baket al. [9] as an example of SOC, an
has been then modified by Drossel and Schwabl [10]. T
model is defined on a lattice in which each site can
empty (si  0), occupied by a green tree (si  1) or by
a burning tree (si  2). At each time step the lattice i
updated as follows: (i) A burning tree becomes an em
site; (ii) a green tree becomes a burning tree if at le
one of its neighbors is burning; (iii) a tree can grow in
empty site with probabilityp; (iv) a tree without burning
nearest neighbors becomes a burning tree with probab
f. The model was first studied in the casef  0 for
the limit of very slow tree growth (p °! 0). In this
limit the critical behavior is trivial: The model show
spiral-shaped fire fronts separated by a diverging len
j , p2np , wherenp . 1 [18]. In the casef . 0, the
system is supposed to exhibit SOC under the hypoth
of a double separation of time scales: Trees grow
compared with the occurrence of lightnings and for
clusters burn down much faster than trees grow. T
request is expressed by the double limitu ; fyp ! 0
andp ! 0. The critical state is characterized by a pow
law distribution Pssd  s2t of the forest clusters ofs
sites (avalanches in the SOC terminology) and the ave
cluster radius (the correlation length) scales asR , u2nR .

With the DDRG framework we are able to generali
a previous RG scheme [12] in order to include the pro
treatment of the time scaling and to study the limitf  0
(deterministic FFM). The dynamical rules of the FF
are local and the set of dynamical parameters, defined
m  h f, pj, is obtained explicitly in terms of the dynam
cal operators acting on a single site, i.e.,k1jT j0l  p
and k2jT j1l  f. The relevant dynamical scales is d
fined by the burning process which occurs with prob
bility one. We define a cell-to-site transformation wi
scale factorb  2 or larger. The rules defining th
cell renormalization operatorR are standard geometr
cal spanning conditions [19], and their explicit form c
be found in Ref. [15]. The above scheme defines a
nite lattice truncation on four (two) sites cells ind  2
(d  1), and denoting by an indexa each cell configu-
ration, we have that

P
hsij °!

P
a. The renormalization

equations that define the renormalized parameters ca
conveniently written as

kSi jT
0jS0

i l 

P
a

P
a0 ka0jTbz

jalWaP
a Wa

, (7)
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wherejal and ja0l are the cell states which renormalize
respectively, injS0

i l and jSil. We keep the subscrip
i since the states refer now to a single coarse grai
site and not to a configuration of the system. WithWa

we denote the stationary statistical weight of eacha

configuration. This distribution is approximate followin
the DDRG scheme in the lowest order [Eq. (4)], in whic
the average steady-state densitieskrkl are obtained as a
function of m  h f, pj from the stationary solution of
dynamical mean field equations [20].

We focus our analysis in the critical region denote
by the conditionf ø p ø 1, namely where the system
shows critical behavior. The time scaling factor
obtained by imposing that the renormalized burnin
process occurs with probability one (k0jT 0j2l  1). In
d  1 this condition is fulfilled up to second order in
f and p and givesz  1, recovering the exact resul
of Ref. [21]. This result is due to the fact that i
d  1 there is only a possible way to span the ce
and consequently no proliferations are generated.
d  2 one has to consider the average over differe
paths, and new dynamical interactions are generated
each RG step. This is a signature that we need
approximation which truncates the parameter space a
each iteration so that it remains closed. This is do
by considering just the leading order inf and p in the
renormalization equations, and ignoring any proliferatio
generated at each group iteration. With this scheme
obtain z  1, which is not an exact result also if in
good agreement with numerical simulations (z  1.04
[22]). It is worth remarking that the DDRG allows on
to overcome the approximations present in the appro
of Ref. [12], where the time scaling was not proper
considered because of the assumption of an infinite ti
scale separation. In addition the general scheme show
far provides the inroad towards a systematic improvem
of the results by introducing higher order correlations
the stationary distribution as discussed in Ref. [23].

Once the time scale factor is set we can write recurs
relations forp and f, or equivalentlyu0  xsu, pd and
p0  ysu, pd, evaluating the probabilities that a coars
grained cell grows or is struck by a lightning inbz steps.
The driving condition and recursion relations derivation
long and tedious and the explicit equations are repor
elsewhere [15]. The flow diagram is stable with respe
to different coarse graining rules, and ford  1 and
d  2 we find a repulsive fixed point inuc  0 and
pc  0. The fixed point densities are obtained from th
driving condition and depend on the dimensionality.
order to discuss the critical behavior we have to linear
the recursion relations in the proximity of this fixe
point and to find the relevant eigenvalues of the diago
transformation:

l1 
≠u0

≠u

Ç
uc ,pc

, l2 
≠p0

≠p

Ç
uc ,pc

. (8)
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In d  2 the largest eigenvalue is given byl1, which de-
termines the leading scaling exponentnR  ln by ln l1 
0.7 (for b  2) obtained in Ref. [12]. The result is in
good agreement with numerical simulation (nR  0.6)
[22]. In the limit f  0 the critical behavior is gov-
erned by the second eigenvaluel2. This eigenvalue and
its relative exponent describes the behavior of the co
relation length in the deterministic FFM. As oppose
to l1, the value ofl2 depends on the absolute value o
the time scaling factor [24], and therefore could not b
obtained without the DDRG formalism. The numerica
value we obtain ind  1, 2 is np  ln 2y ln l2  1.0,
which is in excellent agreement with the simulation resu
np . 1 [18].

Our characterization of the flow diagram clarifies th
critical nature of the model. The FFM is critical only fo
uc  0, pc  0. This implies thatu, p are thecontrol
parametersof the model, and the critical state is reache
only by a fine tuning of these parameters. Similar resu
are obtained by applying the DDRG to the sandpile mod
[15]. These results allow us to clarify the meaning o
SOC with respect to nonequilibrium critical phenomen
In SOC literature it is often reported that the origin o
scale invariance in nature lies in the absence of tuni
parameter, like the critical temperature in Ising models.
the renormalization group language this would imply th
no relevant parameters should be present. The situa
is, however, more subtle. It has been recognized tha
common characteristic of SOC systems is the presence
two time scalesta, the typical relaxation (activity) time,
and td the external driving time scale (often an extern
noise). In order to observe criticality the ratioT 
taytd must be vanishingly small (T °! 0) [24,25].
With our approach we can recast the above concept
more formal terms. Our RG analysis shows the tim
scales ratioT is indeed thecontrol parameterof SOC
models. This parameter is the ratio betweenf, p, and
the burning time scale in the forest-fire model or the sa
addition and the avalanche dissipation in sandpiles, bu
always related to the ratio between different time scale
From a theoretical point of view the critical nature of SO
systems is not different from that of nonequilibrium phas
transitions. The peculiarity of these systems is that clo
to the critical point the system is quite stable to chang
of the dynamical time scales. In fact, the reduced cont
parameter, which is defined ase  sT 2 TcdyTc, in
SOC systems isT itself, beingTc  0. This implies that
if e . 0, even relevant changes of the control parame
(T °! nT and n , e21) do not drive the system far
from the critical region. Apparently the system woul
not be affected by changes ofT , and in this sense
SOC systems are not very sensitive to fine tuning of t
control parameter. The meaning of SOC is then relat
to the widespread existence of phenomena ruled by v
different time scales and not to the absence of releva
control parameters as often reported in the literature.
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