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We propose a two-dimensional geometrical model, based on the concept of geometrical frustration,
conceived for the study of compaction in granular media. The dynamics exhibits an interesting inverse
logarithmic law that is well known from real experiments. Moreover, we present a simple dynamical
model of N planes exchanging particles with excluded volume problems, which allows us to clarify
the origin of the logarithmic relaxations and the stationary density distribution. A simple mapping
allows us to cast this Tetris-like model in the form of an Ising-like spin system with vacancies.
[S0031-9007(97)03818-0]
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A granular system may be in a number of differe
microscopic states at fixed macroscopic densities,
many unusual properties are linked to its nontriv
packing [1,2]. As pointed out by Edwards [2–4] the ro
that the concept of free energy plays in standard ther
systems as Ising models, in granular media seems to
played by the “effective volume,” derived by a comple
function of grain positions and orientations. In this wa
statistical mechanics provides theoretical concepts in
context of nonthermal systems.

A recent experiment on the problem of density com
paction in a dry granular system under tapping has sho
[5] that density compaction follows an inverse logarithm
law with the tapping number.

Several approaches have been proposed to explain
behavior [6–11], as geometrical models of “parkin
[10,12] or simple free-volume theories [11] or the stu
of the dynamics of a frustrated lattice gas with quench
disorder subject to gravity and vibrations [9].

In many seemingly different cases the logarithmic r
laxation proposed in [5] to describe experimental data
reproduced. Moreover, the logarithmic law has turned
to be robust with respect to changes in the tapping pro
dure [9]. This suggests that such a relaxation behavio
extremely general and not linked to specific properties
definite realizations.

Here we introduce a purely geometrical model
simple particles with several shapes on a lattice. We sh
that when subject to gravity and vibrations a logarithm
density relaxation [5] is found, due to the high entrop
barriers (originated for geometrical reasons) to be pas
by particles to improve global packing.

We imagine a model similar to the computer gam
Tetris, in which neighboring grains can find differen
packing volumes according to their relative geometric
orientations. Although one could imagine a rich variety
0031-9007y97y79(8)y1575(4)$10.00
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shapes and dimensions, as in the real computer game,
useful, without loss of generality for the main features,
think just of a system of elongated particles which occu
the sites of square lattice tilted by45± (see Fig. 1, with
periodic boundary conditions in the horizontal directio
(cylindrical geometry) and a rigid plane at its bottom. I
general, the only interactions between the particles
the geometrical ones. Particles cannot overlap, and
condition produces very strong constraints (frustratio

FIG. 1. Schematic picture of one particular configuration
the grains considered in the simplest version of the Tetr
like model. The two types of particles have to fulfill only
geometrical constraints in their dynamics. As shown in t
figure these constraints are due to the impossibility for t
particles to overlap.
© 1997 The American Physical Society 1575
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on their relative positions. For instance, in the simple
case of two kinds of elongated particles pointing
two (orthogonal) directions, the frustration implies th
two identical particles (pointing in the same directio
cannot occupy neighboring sites in this direction. T
particles are in principle allowed to rotate if at lea
three of their nearest neighbors are empty. This condit
is such that for sufficiently high densities the rotatio
events become negligible and the particles keep defini
their orientation. It is then reasonable, in the limit
a sufficiently large system, to consider an equal num
of the two kinds of particles. There is no other form
interaction between particles, and in this sense the mo
is purely geometrical.

As stated, the particles are confined to a box a
subjected to gravity. The effect of vibrations is introduc
by allowing the possibility of also moving upwards, a
explained below.

The system is initialized by filling the container. Th
procedure of filling consists of inserting the grains at t
top of the system, one at the time, and letting them f
down, performing, under the effect of gravity, an orient
random walk on the lattice, until they reach a stab
position, say a position in which they cannot fall furthe
This filling procedure is realized by the addition of on
particle at a time and stops when no particles can en
the box from the top anymore.

In our case the dynamics can be divided in tw
alternating steps. First, in aheating process (tapping)
the system is perturbed by allowing the grains to mo
in any allowed directions with a probabilitypup to move
upwards (with0 , pup , 0.5) and a probabilitypdown ­
1 2 pup to move downwards. After each tapping h
been completed (i.e., a fixed numberN moves per
particle have been attempted with a fixed value ofx ­
pupypdown), we allow the system to relax settingpup ­
0. The relaxation process (cooling) is supposed to be
completed just when no particles can move anym
under just the effect of gravity, i.e., unlesspup is switched
on. After this relaxation the system is in a stable sta
state and one starts again the cycle. We verified h
the basic features of our model are very robust w
respect to variations in the Monte Carlo procedure. It
worthwhile to stress how our dynamical procedure is ve
close physically to the real processes of vibro-compact
[13]. Work is in progress to implement in our system t
method proposed in [14] which allows for the simulatio
of a real tapping process.

More precisely, the single dynamical step consists
the following operations: (1) extracting a grain wit
uniform probability; (2) extracting a possible moveme
for this grain among the four first neighbors (two for th
cooling process) according to the probabilitiespup and
pdown; (3) moving the grain ifall the possible geometrica
constraints with the neighbors are satisfied.

We performed numerical simulations of the Tetris-lik
model in order to investigate its compaction properti
1576
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In particular, we measured the density of the packin
i.e., the percentage of sites occupied with respect to
total number of sites, after each relaxation step an
in correspondence with real experiments, we plot t
behavior of this density as a function of the number
taps. In order to avoid finite-size effects we consider
systems with a linear size of at leastL ­ 50 sites and, in
order to be sure to observe bulk effects, we measured
density in the lower25% of the system.

Our main results on compaction are summarized
Fig. 2 which shows the evolution of the density, as
function of the number of taps, for different values o
x and for a system of dimensionL ­ 50. The different
curves, obtained with a tap length of one iteration p
particle, can be fitted according to the following invers
logarithmic law:

rstnd ­ r` 2
Dr`

1 1 B lnstnyt 1 1d
, (1)

with r` ­ 1, a valueDr` ­ 0.25, which depends only
on the loose packing densityrt0 , 0.75, and two free
parameters,B and a characteristic timet, for which we
observe an algebraic dependence onx:

t ­ Ax2g , (2)

where g . 0.84 and A ­ 4.3. In this caset has the
meaning of the minimum time over which one starts
observe a compaction process. Up to timestn ø t, in
fact, rstnd keeps practically the initial value. A complete
and detailed analysis of these numerical results is repor
in [15].

Let us now briefly discuss how the system reaches t
close-packing density which, just in the case of the sim
plest version with only two possible shapes, correspon

FIG. 2. Logarithmic behavior of the density of the packing
measured in the lower25% of the system, as a function of
tapping numbertn, for five different values of amplitude vi-
brationsx ­ pupypdown ­ 0.001, 0.01, 0.03, 0.1, 0.5, from bot-
tom to top. The superimposed logarithmic fit curves, given b
Eq. (1), were proposed to describe experimental data.
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to a perfectly ordered state with unitary density. It
worth stressing again how this choice does not change
qualitative behavior of the system, and an infinity of d
ordered ground states can be obtained just allowing
a rich variety of shapes for the particles [15]. The a
proach to this state, realized by means of the two-s
dynamics described above, represents a complex none
librium process in which the system evolves alternative
with two different “temperatures:” a temperatureT2 (heat-
ing process) such thate22gyT2 ­

pup

12pup
and a tempera-

ture T1 ­ 0 for the cooling process. The first step cou
be considered as a process going towards equilibrium
which detailed balance holds. Its features in many resp
are very similar to the simplehard-square model[16]. The
step at zero temperature is an out of equilibrium proc
which involves an irreversible positioning of the particle
Globally the microscopic reversibility and detailed balan
are lost.

In order to gain a deeper insight into the quot
logarithmic dynamical behaviors, let us introduce a
discuss a simple model which describes the evolut
of a system of particles which hop on a lattice ofn ­
0, . . . , N stacked planes according to the ideas of park
introduced in [10,12]. We consider a system of partic
which can move up or down betweenN layers in such
a way that their total number is conserved. We igno
the correlations among particles rearrangements and
problem related to the mechanical stability of the syste
The master equation for the density on a generic planen,
except for then ­ 0 plane, is given by

≠trn ­ s1 2 rndDsrnd frn21pup 1 rn11pdowndg

2 rnfs1 2 rn21dDsrn21dpdown

1 s1 2 rn11dDsrn11dpupg , (3)

where pdown and pup have been defined above for th
Tetris-like model. Dsrnd is a sort of mobility for the
particles given by the probability that the particle cou
find enough space to move. Apart from other effe
it takes mainly into account the geometrical effects
frustration, i.e., the fact that the packing prevents the f
move of the particles. In a naive way one could imagi
a functional form like Dsrnd ­ rns1 2 rn0d obtained
by considering only the nearest neighbors interactio
in the Tetris-like model. It is easy to realize that su
an approach does not account for the complexity of
problem where the packing at high densities creates l
range correlations in the system, and, using this functio
form, the equations show a trivial exponential relaxatio
Nontrivial results are obtained with a careful choice
the functional form forDsrnd which takes onto accoun
the cooperative effects on the dynamics generated
the frustration. This functional form can be obtained
evaluating the rate specifying how many steps are nee
in a frustrated system, i.e., the Tetris-like model, w
respect to a nonfrustrated one, to achieve a rearrangem
in a new configuration. We do not report here t
s
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complete calculation of this rate which involves th
evaluation of the configurational entropy of the frustrat
and of the nonfrustrated systems, respectively, and
refer to [17]. It is, nevertheless, particularly enlightenin
to consider the exampleN ­ 2. In this case the system
can be reduced to a one-dimensional chain in which
average length of the filled intervals turns out to be giv
by kll . rys1 2 rd. The number of steps to move
certain particle, related to the number of steps necess
to move the entire interval (of average lengthkll) aside
that particle, will be the order ofNr , expkll. The
general form ofDsrnd, although very complicated, mus
then include a term like

Dsrnd ­ D0 expf2rnys1 2 rndg . (4)

We checked this functional form, which can be se
how the outcome of a free-volume theory for granul
media [10,11,17], by means of specific simulations f
that quantity on the Tetris-like model [15].

In the general case with arbitraryN we obtained the
exact asymptotic stationary solution for the density
each plane. This solution is in an implicit form and fo
that we refer to [15]. It is possible, nevertheless, to extr
the approximate explicit behaviors. In particular, ifM is
the total “mass” of the system, i.e., the maximal numb
of planes which can be completely filled, one getsΩ

r
`
k . 1 2 1yfsM 2 kd lns1yxdg for k ø M ,

r
`
k . esM2kd lns1yxd for k ¿ M .

(5)

The stationary solution tends thus to a step functi
usk 2 Md in the limit x ! 0.

Let us now comment on the dynamical behavior of t
system, i.e., the relaxation towards the stationary soluti
We start by considering the simplest case with justN ­ 2
planes. In the limitx ; pupypdown ø 1 and for a suffi-
ciently high total densityr ­ 1 2 e (e ø 1), one can
easily prove [15] that the asymptotic equilibrium lowe
plane density behaves liker`

1 . 1 1 1y lnfxfsedg, where
fsed ­ 2eys1 2 2ed expf2s1 2 2edy2eg. The dynami-
cal equation forr1 can be written exactly. In the limit
r1 ¿ s1 2 2ed (which holds for sufficiently long times)
this equation exhibits a very simple form as

≠tr1 ­ Bsx, ed s1 2 r1dDsr1d 2 Asx, edr1 , (6)

with Bsx, ed ­ s1 2 2edys1 1 xd and Asx, ed ­
2e expf2s1 2 2edy2egxys1 1 xd. This equation has the
same form of the one-dimensional “parking problem
studied in [10] whose absorption and desorption param
ters are now written in terms of the global density
the system1 2 e, and of the vibration amplitude ratio
x. It exhibits a logarithmic solution up to times of th
order oft0 , 1yAsx, ed [10]. Later on, when the density
approaches its steady state value, the first term on
right-hand side of Eq. (6) becomes negligible with respe
to the loss term, and an exponential saturation becom
dominant. Here we just note thatt0 grows inversely
proportional tox but has an essential singularity fore
1577
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going to zero. So for low enough amplitude vibratio
or high enough densities the logarithmic region exten
actually up to any experimentally observable time. T
cooperative effect of interaction among the differe
planes makes the times over which one observes
logarithmic relaxation longer and longer. Crucial for th
effect is the value ofe, i.e., the asymptotic difference o
density between two adjacent planes. In the general c
of N planes, one has from Eq. (5) that in the bulk, f
finite values ofx, ek . xM2k , i.e., theek are exponen-
tially small in M. We then expect that the logarithmi
relaxations extend up to times of the order ofx2M (see
[15] for a detailed discussion of this point).

Let us now notice a further aspect of our model. T
two-step dynamics of our model may be easily interpre
in terms of a Glauber dynamics for a Hamiltonian wi
Ising-like variables. In this language the geometric
model is mapped into the following Ising-like Hamiltonia
with vacancies in the limitJ ! `:

H ­
X
kijl

JfSiSj 2 aijsSi 1 Sjd 2 1gninj 1 g
X

i

ysid ,

(7)

whereni ­ 0, 1 are occupancy variables andSi ­ 61 are
spin variables that corresponds to the twofold orientat
of the particles. aij ­ 61 are fixed nonrandom bond
fields with ordered structures:aij ­ 1 for bonds along one
direction of the lattice andaij ­ 21 for bonds in the other.
In the gravitational term2g

P
i ysid, g is the gravity, and

ysid is the ordinate of the lattice sitei. It is easy to realize
that the sum of theaij converging on each single site i
zero. This implies that the ground state of Hamiltoni
(7) is perfectly antiferromagnetic if the densities of th
two kinds of particles are equal. This state is reach
just when all the sites of the lattice are occupied, soni ­
1 ;i. This mapping, and the ones for the models with
variety of shapes which lead to Potts-like Hamiltonian
are particularly useful as starting points for an analysis
these systems in a thermodynamic framework [15].

In this paper we have introduced a very simple ge
metrical model in order to describe the phenomenon
compaction in dry granular media. It takes into accou
excluded volume effects, say the geometrical constra
which are felt by granular media during the relaxation t
wards the highest density optimal packing configuratio
When subjected to Monte Carlo vibrations, defined by
diffusive dynamics, it exhibits a density compaction a
ter tapping which reproduces the inverse logarithmic b
havior found in both experiments [5] and other mode
[8–10].

This Tetris-like model can be easily generalized
introducing an arbitrary fixed number of shapes for t
particles which correspond to complicated matrices for
particle-particle interactions. This kind of generalizatio
does not change the qualitative structure of the relaxat
1578
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but it could account for other effects of disorder i
granular media: segregation, hysteresis, etc. [15].

Furthermore, we presented a simple dynamical mo
of N planes exchanging particles with excluded volum
effects. For this model we have found the exact stationa
density distribution and we have shown how, witho
loss of generality with respect to the choice of particul
geometrical constraints, it allows for an explanation of th
inverse logarithmic law for compaction.

It is, moreover, interesting that the pure geometric
model presented here can be mapped into a simple Ha
tonian formalism of an Ising antiferromagnet. This con
nects our work to previous works [3,9,10] introduced
discuss different aspects of granular media phenomen
ogy, and could open the way to their systematic ana
sis [15].

We are indebted to A. Coniglio for useful suggestion
We thank P. G. De Gennes for bringing to our attentio
his preprint.
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