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A “Tetris-Like” Model for the Compaction of Dry Granular Media
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We propose a two-dimensional geometrical model, based on the concept of geometrical frustration,
conceived for the study of compaction in granular media. The dynamics exhibits an interesting inverse
logarithmic law that is well known from real experiments. Moreover, we present a simple dynamical
model of N planes exchanging particles with excluded volume problems, which allows us to clarify
the origin of the logarithmic relaxations and the stationary density distribution. A simple mapping
allows us to cast this Tetris-like model in the form of an Ising-like spin system with vacancies.
[S0031-9007(97)03818-0]

PACS numbers: 81.05.Rm, 05.50.+q, 05.70.Ln

A granular system may be in a number of differentshapes and dimensions, as in the real computer game, it is
microscopic states at fixed macroscopic densities, andseful, without loss of generality for the main features, to
many unusual properties are linked to its nontrivialthink just of a system of elongated particles which occupy
packing [1,2]. As pointed out by Edwards [2—4] the rolethe sites of square lattice tilted bB45° (see Fig. 1, with
that the concept of free energy plays in standard thermaleriodic boundary conditions in the horizontal direction
systems as Ising models, in granular media seems to Heylindrical geometry) and a rigid plane at its bottom. In
played by the “effective volume,” derived by a complex general, the only interactions between the particles are
function of grain positions and orientations. In this waythe geometrical ones. Particles cannot overlap, and this
statistical mechanics provides theoretical concepts in theondition produces very strong constraints (frustration)
context of nonthermal systems.

A recent experiment on the problem of density com-
paction in a dry granular system under tapping has shown
[5] that density compaction follows an inverse logarithmic
law with the tapping number. g

Several approaches have been proposed to explain this
behavior [6—11], as geometrical models of “parking”
[10,12] or simple free-volume theories [11] or the study
of the dynamics of a frustrated lattice gas with quenched
disorder subject to gravity and vibrations [9].

In many seemingly different cases the logarithmic re-
laxation proposed in [5] to describe experimental data is
reproduced. Moreover, the logarithmic law has turned out
to be robust with respect to changes in the tapping proce-
dure [9]. This suggests that such a relaxation behavior is
extremely general and not linked to specific properties of
definite realizations.

Here we introduce a purely geometrical model of
simple particles with several shapes on a lattice. We show
that when subject to gravity and vibrations a logarithmic
density relaxation [5] is found, due to the high entropic
barriers (originated for geometrical reasons) to be passed
by particles to improve global packing. FIG. 1. Schematic picture of one particular configuration of

We imagine a model similar to the computer gamet.he grains considered in the simplest version of the Tetris-
Tetris in which neighboring grains can find different like model. The two types of particles have to fulfill only

X i X ) ; eometrical constraints in their dynamics. As shown in the
packing volumes according to their relative geometrlcaﬁ

A ] ! c 3 ! gure these constraints are due to the impossibility for the
orientations. Although one could imagine a rich variety ofparticles to overlap.
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on their relative positions. For instance, in the simplesin particular, we measured the density of the packing,
case of two kinds of elongated particles pointing ini.e., the percentage of sites occupied with respect to the
two (orthogonal) directions, the frustration implies thattotal number of sites, after each relaxation step and,
two identical particles (pointing in the same direction)in correspondence with real experiments, we plot the
cannot occupy neighboring sites in this direction. Thebehavior of this density as a function of the number of
particles are in principle allowed to rotate if at leasttaps. In order to avoid finite-size effects we considered
three of their nearest neighbors are empty. This conditiosystems with a linear size of at ledst= 50 sites and, in
is such that for sufficiently high densities the rotationorder to be sure to observe bulk effects, we measured the
events become negligible and the particles keep definitelglensity in the lowef5% of the system.
their orientation. It is then reasonable, in the limit of Our main results on compaction are summarized in
a sufficiently large system, to consider an equal numbeFig. 2 which shows the evolution of the density, as a
of the two kinds of particles. There is no other form of function of the number of taps, for different values of
interaction between particles, and in this sense the model and for a system of dimensiah = 50. The different
is purely geometrical. curves, obtained with a tap length of one iteration per
As stated, the particles are confined to a box angarticle, can be fitted according to the following inverse
subjected to gravity. The effect of vibrations is introducedlogarithmic law:
by allowing the possibility of also moving upwards, as A
explained below. p(ty) = po — Pee , (1)
The system is initialized by filling the container. The I+ BIn(,/7 + 1)
procedure of filling consists of inserting the grains at thewith p.. = 1, a valueAp.. = 0.25, which depends only
top of the system, one at the time, and letting them fallon the loose packing density,, ~ 0.75, and two free
down, performing, under the effect of gravity, an orientedparametersp and a characteristic time, for which we
random walk on the lattice, until they reach a stableobserve an algebraic dependenceron
position, say a position in which they cannot fall further. ;= Ax? @)
This filling procedure is realized by the addition of one ’
particle at a time and stops when no particles can entexhere y = 0.84 and A = 4.3. In this caser has the
the box from the top anymore. meaning of the minimum time over which one starts to
In our case the dynamics can be divided in twoobserve a compaction process. Up to timgs< 7, in
alternating steps. First, in heating process (tapping) fact, p(z,) keeps practically the initial value. A complete
the system is perturbed by allowing the grains to moveand detailed analysis of these numerical results is reported
in any allowed directions with a probability,, to move in [15].
upwards (with0 < p,, < 0.5) and a probabilitypgown = Let us now briefly discuss how the system reaches the
1 — pyp to move downwards. After each tapping hasclose-packing density which, just in the case of the sim-
been completed (i.e., a fixed numb@& moves per plest version with only two possible shapes, corresponds
particle have been attempted with a fixed valuexof
Pup/ Paown), We allow the system to relax setting,, =
0. The relaxation processdoling is supposed to be 0.9
completed just when no particles can move anymore 0.88
under just the effect of gravity, i.e., unlegg, is switched )
on. After this relaxation the system is in a stable static 0.86
state and one starts again the cycle. We verified how
. : 0.84
the basic features of our model are very robust with —~
respect to variations in the Monte Carlo procedure. It is C/F 0.82
worthwhile to stress how our dynamical procedure is very <
close physically to the real processes of vibro-compaction
[13]. Work is in progress to implement in our system the 0.78
method proposed in [14] which allows for the simulation
of a real tapping process.
More precisely, the single dynamical step consists of 0.74 ¢
the following operations: (1) extracting a grain with 1
uniform probability; (2) extracting a possible movement
for this grain among the four first neighbors (two for the
cooling process) according to the probabilitips, and ~ FIG. 2. Logarithmic behavior of the density of the packing,

. ; T ; ; measured in the lowe25% of the system, as a function of
Pdown; (3) moving the grain iall the possible geometrical tapping number,, for five different values of amplitude vi-

constraints with the neighbors are ;atisfied. . Drationsx = pep/paom = 0.001,0.01,0.03,0.1,0.5, from bot-
We performed numerical simulations of the Tetris-like tom to top. The superimposed logarithmic fit curves, given by

model in order to investigate its compaction propertiesEq. (1), were proposed to describe experimental data.
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to a perfectly ordered state with unitary density. It iscomplete calculation of this rate which involves the
worth stressing again how this choice does not change thevaluation of the configurational entropy of the frustrated
qualitative behavior of the system, and an infinity of dis-and of the nonfrustrated systems, respectively, and we
ordered ground states can be obtained just allowing forefer to [17]. It is, nevertheless, particularly enlightening
a rich variety of shapes for the particles [15]. The ap-to consider the exampl¥ = 2. In this case the system
proach to this state, realized by means of the two-stepan be reduced to a one-dimensional chain in which the
dynamics described above, represents a complex nonequaiverage length of the filled intervals turns out to be given
librium process in which the system evolves alternativelyby () = p/(1 — p). The number of steps to move a
with two different “temperatures:” a temperatfg(heat-  certain particle, related to the number of steps necessary
ing process) such that 28/ = % and a tempera- to move the entire interval (of average lendih) aside
ture T, = 0 for the cooling process. The first step couldthat particle, will be the order ofv, ~ expl). The
be considered as a process going towards equilibrium igeneral form ofD(p,), although very complicated, must
which detailed balance holds. Its features in many respect§en include a term like
are very similar to the simpleard-square modg¢LL6]. The _ _ _
step at zero temperature is an out of equilibrium process Dlpa) = Doexpl=pu/(1 = pu)]. “)
which involves an irreversible positioning of the particles.We checked this functional form, which can be seen
Globally the microscopic reversibility and detailed balancehow the outcome of a free-volume theory for granular
are lost. media [10,11,17], by means of specific simulations for
In order to gain a deeper insight into the quotedthat quantity on the Tetris-like model [15].
logarithmic dynamical behaviors, let us introduce and In the general case with arbitraty we obtained the
discuss a simple model which describes the evolutiorexact asymptotic stationary solution for the density on
of a system of particles which hop on a lattice of=  each plane. This solution is in an implicit form and for
0,...,N stacked planes according to the ideas of parkinghat we refer to [15]. Itis possible, nevertheless, to extract
introduced in [10,12]. We consider a system of particleghe approximate explicit behaviors. In particularMfis
which can move up or down betweew layers in such the total “mass” of the system, i.e., the maximal number
a way that their total number is conserved. We ignoreof planes which can be completely filled, one gets
the correlations among particles rearrangements and the . . B
problem related to the mechanical stability of the system. {p’& _ I(M,,})/,,E((%) k)In(1/x)] :or k<M, (5)
The master equation for the density on a generic plgne P =€ ork> M.

except for thex = 0 plane, is given by The statiqnary s_olgtion tends thus to a step function
_ 6(k — M) in the limitx — 0.
dipn = (1= pu)D(pa) [pu-1Pwp + pus1Paown)] Let us now comment on the dynamical behavior of the
— pul(1 = pu—1)D(P1n-1)Pdown system, i.e., the relaxation towards the stationary solution.
We start by considering the simplest case with st 2
+ (1= pas1)D(prs1)pupl, 3) planes. In the limitt = py,/piown < 1 and for a suffi-

where pagown and p,, have been defined above for the ciently high total densityp = 1 — € (¢ < 1), one can
Tetris-like model. D(p,) is a sort of mobility for the easily prove [15] that the asymptotic equilibrium lower
particles given by the probability that the particle couldplane density behaves likg” = 1 + 1/In[xf(e)], where
find enough space to move. Apart from other effectsf(e) = 2¢/(1 — 2e)exd—(1 — 2¢)/2e]. The dynami-

it takes mainly into account the geometrical effects ofcal equation forp; can be written exactly. In the limit
frustration, i.e., the fact that the packing prevents the fre@: > (1 — 2¢) (which holds for sufficiently long times)
move of the particles. In a naive way one could imaginethis equation exhibits a very simple form as

a functional form like D(p,) = p,(1 — p,/) obtained . . B

by considering only the nearest neighbors interactions dip1 = Blx, €)1 = p1)D(p1) = Alx, €)p1,  (6)
in the Tetris-like model. It is easy to realize that suchwith  B(x,e) = (1 — 2¢)/(1 + x) and A(x,e) =

an approach does not account for the complexity of the exd —(1 — 2¢€)/2€]x/(1 + x). This equation has the
problem where the packing at high densities creates longame form of the one-dimensional “parking problem”
range correlations in the system, and, using this functionadtudied in [10] whose absorption and desorption parame-
form, the equations show a trivial exponential relaxationters are now written in terms of the global density of
Nontrivial results are obtained with a careful choice ofthe systeml — €, and of the vibration amplitude ratio
the functional form forD(p,) which takes onto account x. It exhibits a logarithmic solution up to times of the
the cooperative effects on the dynamics generated bgrder ofry ~ 1/A(x, €) [10]. Later on, when the density
the frustration. This functional form can be obtained byapproaches its steady state value, the first term on the
evaluating the rate specifying how many steps are needetht-hand side of Eq. (6) becomes negligible with respect
in a frustrated system, i.e., the Tetris-like model, withto the loss term, and an exponential saturation becomes
respect to a nonfrustrated one, to achieve a rearrangemetdminant. Here we just note tha§ grows inversely

in a new configuration. We do not report here theproportional tox but has an essential singularity fer
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going to zero. So for low enough amplitude vibrationsbut it could account for other effects of disorder in
or high enough densities the logarithmic region extendgranular media: segregation, hysteresis, etc. [15].
actually up to any experimentally observable time. The Furthermore, we presented a simple dynamical model
cooperative effect of interaction among the differentof N planes exchanging particles with excluded volume
planes makes the times over which one observes theffects. For this model we have found the exact stationary
logarithmic relaxation longer and longer. Crucial for this density distribution and we have shown how, without
effect is the value o, i.e., the asymptotic difference of loss of generality with respect to the choice of particular
density between two adjacent planes. In the general caggometrical constraints, it allows for an explanation of the
of N planes, one has from Eq. (5) that in the bulk, forinverse logarithmic law for compaction.
finite values ofx, €, = x¥ %, i.e., thee, are exponen- It is, moreover, interesting that the pure geometrical
tially small in M. We then expect that the logarithmic model presented here can be mapped into a simple Hamil-
relaxations extend up to times of the orderxof¥ (see tonian formalism of an Ising antiferromagnet. This con-
[15] for a detailed discussion of this point). nects our work to previous works [3,9,10] introduced to
Let us now notice a further aspect of our model. Thediscuss different aspects of granular media phenomenol-
two-step dynamics of our model may be easily interpreteegy, and could open the way to their systematic analy-
in terms of a Glauber dynamics for a Hamiltonian with sis [15].
Ising-like variables. In this language the geometrical We are indebted to A. Coniglio for useful suggestions.
model is mapped into the following Ising-like Hamiltonian We thank P.G. De Gennes for bringing to our attention
with vacancies in the limify — : his preprint.
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