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Earthquake statistics and fractal faults
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We introduce a self-affine asperity model~SAM! for the seismicity that mimics the fault friction by means
of two fractional Brownian profiles that slide one over the other. An earthquake occurs when there is an
overlap of the two profiles representing the two fault faces and its energy is assumed proportional to the
overlap surface. The SAM exhibits the Gutenberg-Richter law with an exponentb related to the roughness
index of the profiles. Apart from being analytically treatable, the model exhibits a nontrivial clustering in the
spatiotemporal distribution of epicenters that strongly resembles the experimentally observed one. A general-
ized and more realistic version of the model exhibits the Omori scaling for the distribution of the aftershocks.
The SAM lies in a different perspective with respect to usual models for seismicity. In this case, in fact, the
critical behavior is not self-organized but stems from the fractal geometry of the faults, which, in its turn, is
supposed to arise as a consequence of geological processes on very long time scales with respect to the seismic
dynamics. Our approach is distinguished by the explicit introduction of the fault geometry as an active element
of this complex phenomenology.@S1063-651X~97!04605-9#

PACS number~s!: 05.45.1b, 91.30.Px
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I. INTRODUCTION

Recently, theoretical models have acquired an increa
relevance in the study of seismicity. Their aim is to fill th
gap between experimental knowledge and theoretical c
prehension of the phenomenon.

One of the most serious problems which geologists h
to face is the lack of complete catalogues extended over
time periods. This makes it difficult to improve general co
prehension about earthquakes. By studying theoretical m
els, one then tries to focus on some particular ingredie
which are supposed to be essentials, and then tries to un
stand as much as possible of the seismic behavior. In
way one can compare the specific predictions of the mo
with those obtained from the real catalogues.

Though the dynamics of earthquakes is very comp
there are some simple basic components which have t
taken into account in a model:~a! earthquakes are generate
by a very slow discontinuous driving of a fault;~b! the oc-
currence of earthquakes is intermittent, i.e., they occur
abrupt rupture events when the fault can no longer sus
the stress; and~c! there are two separate time scales involv
in the process; one is related to the stress accumulation w
the other, which is orders of magnitude smaller, is associa
to the duration of the abrupt releases of stress.

Many forms of scaling invariance appear in seismic p
nomena. The most impressive feature is the celebra
Gutenberg-Richter law@1# for the magnitude distribution o
earthquakes. It states that the probabilityP(E)dE that an
earthquake releases energy in the interval@E,E1dE# scales
according to a power law
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P~E!;E2b21, ~1!

with an exponentb of the order of unity whose eventua
universality is a matter of debate.

The Omori law@2# for the time correlations of aftershock
~i.e., seismic events which happen as a consequence
main earthquake! is another example of scaling behavior
the seismic phenomenology and one of the most difficul
reproduce in simplified models.

In the last decades there has been increasing evidenc
the space-time clustering@3# of the earthquake epicenters. I
particular, there is experimental evidence suggesting that
epicenter distribution is self-similar both in space and
time.

Unfortunately, the complexity of modeling the motion o
a fault system, even in rather well controlled situations su
as the San Andreas fault in California, is a highly difficu
task and the correct theoretical framework at the very ori
of scaling laws is still controversial. It is thus important
make the simplest possible models that are able to exhibit
main qualitative features of the fault dynamics. Their phy
cal relevance stems from the specific predictions on thereal
seismic activity which might be verified from experiment
data.

One of the first attempts in this direction is due to Bu
idge and Knopoff@4#, who introduced a stick-slip model o
coupled oscillators to mimic the interaction of two fault su
faces. In practice, one considers blocks on a rough sup
connected to one another by springs. They are also c
nected by other springs to a driver which moves at a v
low constant speed. The blocks stick until the spring fo
overwhelms the static friction and then one or more bloc
slide, releasing an ‘‘earthquake’’ energy proportional to t
sum of the displacements. In the frame of the inferior pla
1346 © 1997 The American Physical Society
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56 1347EARTHQUAKE STATISTICS AND FRACTAL FAULTS
if xi denotes the position of thei th block, the equations o
motion are

miẍi5kc,i~xi 112xi !2kc,i 21~xi2xi 21!

2kp,i~xi2vt !1Fi~ ẋi !, ~2!

whereFi( ẋi) represents the friction force which depends
the block velocityẋi . In the original model the friction force
zero for zero velocity, increases progressively as the velo
increases up to a certain maximum value. This model ex
its the Gutenberg-Richter law for the distribution of the e
ergy released during an earthquake and it allows for the p
ence of aftershocks. Up to now the original model
Burridge and Knopoff remains the only one able to expl
the presence of aftershocks withoutad hocmodifications.

A numerical integration of the Newton equations for
one-dimensional chain with a large number of homogene
blocks has been performed by Carlson and Langer@5#. Their
model differs from that of Burridge and Knopoff in the form
of the friction force which is supposed to be identical for
the blocks, neglecting the inhomogeneities of the crust. It
been shown that the model exhibits the Gutenberg-Ric
law @1# ~see also@6# for the connection with the chaoti
behavior of the system!.

More recently it has been suggested that the qualita
aspects of earth-quakes~and of Burridge and Knopoff mod
els! could be captured by the so-called sandpile mod
which are the paradigm of a large class of models show
self-organized criticality~SOC! @7#. The concept of self-
organized criticality has been invoked by Bak, Tang, a
Wiesenfeld @7# to describe the tendency of dynamical
driven systems to evolve spontaneously towards a crit
stationary state with no characteristic time or length sc
An example of this behavior is provided by sandpile mode
sand is added grain by grain in a pile on ad-dimensional
lattice until unstable sand~too large local slope of the pile!
slides off. In this way the pile reaches a steady state wh
additional sand grains fall off the pile by avalanche even
This steady state is critical since avalanches of any size
observed. According to this picture of self-organized critic
ity, during its whole evolution the Earth would have reach
a marginally stable state in which any small perturbat
could give rise to relaxation processes, earthquakes in
case, that can be small or cover the entire system. In this
the earthquakes would be the equivalents of avalanches
sandpile models. The main ingredient in this picture wo
be the interplay between the slow dynamics, represente
the stress accumulation, and the fast dynamics of ea
quakes. The latter would modify the Earth’s crust which,
its turn, can give rise to earthquakes and so on, with a fe
back mechanism that would be at the origin of the se
organization.

There exists a whole generation of SOC models propo
to explain the scale-invariant properties of earthquakes@8,9#.
These types of models suggest, however, that there is
stress accumulation before a big earthquake and the e
nent of the Gutenberg-Richter law is expected~with the ex-
ception @10# that we mention hereafter! to be universal. In
addition the space-time distribution of the epicenters has
clear relation with the experiments where nontrivial clust
ing is present.
ty
b-
-
s-
f

us

l
s

er

e

s,
g

d

al
e.
:

re
.
re
-
d
n
is

ay
for
d
by
h-

d-
-

d

no
o-

o
-

It is worthwhile to recall in this framework the mode
proposed by Olami, Feder, and Christensen@10#. Their
model maps the two-dimensional version of the Burridg
Knopoff spring-block model in a cellular automaton and
gives a good prediction of the Gutenberg-Richter law with
nonuniversal value of theb exponent, which varies with the
level of nonconservation of the model and could account
the b variances observed in nature.

In order to go beyond the limitations of these models,
have recently proposed an alternative approach@11# where
the critical behavior is not self-organized but stems from
fractal geometry of the faults@12–14#. In this perspective the
faults are supposed to be formed as a consequence of
logical processes on very long time scales with respect to
seismic dynamics. Looking at the system on the time scal
human records the fault structure can be considered assi
and just slightly modified by earthquakes.

In particular, we have introduced the so-called self-affi
asperity model~SAM! @11#, which mimics the fault dynam-
ics by means of the slipping of two rough and rigid Brow
ian profiles one over the other. In this scheme an earth-qu
occurs when there is an intersection between the two profi
The energy released is proportional to the overlap inter
This model, apart from being analytically treatable, exhib
some specific features which follow from the fractal geo
etry of the fault. In particular, it reproduces the Gutenbe
Richter law with an exponentb which is nonuniversal since
it depends on the roughness of the fault profiles. It pred
the presence of a local stress accumulation before a l
seismic event. Moreover, it allows one to analyze and inv
tigate the complex phenomenology of the space-time clus
ing of epicenters. The model exhibits, in fact, a long-ran
correlation of the events which corresponds to a self-sim
distribution of the spatial and temporal epicenter sets. In
scheme it is also possible to include the analysis of the or
of aftershocks and show that, in a natural generalization
the model, they follow the celebrated Omori law.

In this paper we describe in detail the SAM. The analy
cal results are, step by step, tested numerically and, wh
ever possible, via comparison with experimental data.

The outline of the paper is the following. In Sec. II w
introduce the model and we recall some properties of fr
tional Brownian profiles. Section III is devoted to the discu
sion of the Gutenberg-Richter law. We show that the SA
follows this scaling with an exponentb that we relate ana-
lytically to the roughness of the Brownian profile. This a
lows us to draw some conclusions on the nonuniversality
the exponentb. In Sec. IV we discuss the problem of th
distribution of epicenters from both the spatial and the te
poral points of view. The SAM exhibits a nontrivial cluste
ing of epicenters which reproduces the experimental res
and can be analytically explained by exploiting the prop
ties of the fractional Brownian profiles. The problem of th
power spectrum of the temporal sequence of earthquake
also discussed. Section V is dedicated to the introduction
a more realistic version of the SAM. This version, whic
takes into account the local rearrangement of the Ear
crust as a consequence of the earthquakes, exhibits a
trivial scaling in the distribution of the aftershocks, accor
ing to Omori’s law. Finally in Sec. VI we draw conclusion
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1348 56R. HALLGASS et al.
The paper is completed by two appendices on the statistic
the fractional Brownian profiles.

II. THE MODEL

Many authors pointed out that natural rock surfaces
be represented by fractional Brownian surfaces over a w
scale range@12,13# and that also the topographic traces of t
fault surfaces exhibit scale invariance@15#. There is not, up
to now, an exhaustive explanation of the formation of frac
faults but a lot of studies have been carried out in orde
extract geometrical information about the faults@16,17,12#.
This kind of studies is made difficult by the practical impo
sibility of obtaining accurate information about faults whic
are not on the Earth’s surface. Also on the Earth’s surfac
is difficult to identify the fault profile and often what appea
at a certain scale as a single fault is actually compose
several segments of faults. Nevertheless, there exists a
sonable agreement to assume that faults can be regard
fractals and, in particular, as statistically self-affi
profiles FH(t), and then profiles whose height scales
uFH(t1t)2FH(t)u;t H. In d52, such a profileFH(t) can
be generated by fractional Brownian motion~FBM! with ex-
ponentH, the Hurst exponent, and ind53 by the standard
generalization given by Brownian reliefs@18,19#. The expo-
nent 0<H<1 controls the roughness of the fault where t
standard Brownian profile corresponds toH51/2, and a dif-
ferentiable curve corresponds toH51. Just to give an ex-
ample, let us recall how it is possible to generate a Brown
profile. In the one-dimensional case one can generateL ran-
dom variables~RV! $X1 ,...,XL% according to the following
algorithm:

Xi5H 1 with probability p5 1
3

0 with probability p5 1
3

21 with probability p5 1
3 .

On a one-dimensional lattice ofL sites one can thus define
stochastic function

S~n!5S01(
i 51

n

Xi ;n<L, ~3!

where S0 is an arbitrary integer number. Equation~3! de-
fines, in the limitn→`, a self-affine profile of fractal dimen
sion D51.5. More generally, the fractal dimension of th
profile is well known to beDF5d2H. For further details
refer to Appendix A.

The explicit introduction of the fault geometry in a mod
for seismicity was already been supposed by Huang and
cotte@14#. They introduced a static model where the avera
of all the seismic events contributing to the Gutenbe
Richter law is taken over many uncorrelated realizations
one single fractal profile. The purpose of this paper is
introduce a dynamical model, called the self-affine aspe
model, that describes the seismic activity considering t
profiles sliding one over the other instead of only one as
@14#. Such a model has the advantage of exhibiting stro
spatial and temporal correlations also between far away s
mic events, and allows us to infer some specific predicti
of

n
e

l
o

it

of
ea-

as

s

n

r-
e
-
f

o
y
o
n
g
is-
s

about the relation between the roughness of the faultH and
the scaling exponent of the Gutenberg-Richter law as wel
on the spatiotemporal distribution of epicenters.

Note how this model represents an alternative appro
with respect to the SOC models. In this case, in fact, o
supposes the interplay between the fault structure and
seismic events to be lacking. The latter is supposed no
modify substantially the fault geometry. In this sense one
in a sort of limit of infinite rigidity of the Burridge-Knopoff
models.

Operatively, the SAM is defined by the following dy
namical rules.

~i! We consider two profiles, sayS8(n) andS9(n), with
n51,...,L, on parallel supports of lengthL at infinite dis-
tance. The initial condition is obtained by putting them
contact at the point where the height difference is minimal
that ~see Fig. 1!

S8~n!5S9~n!1 max
j P$1,...,L%

$S8~ j !2S9~ j !%, n51,...,L.

~ii ! The successive evolution is obtained by drifting
profile in a parallel way with respect to the other one, a
constant speedv, so thatS8(n;t)5S8(n2vt).

~iii ! At each time stept, one controls whether there ar
new contact points between the profiles, i.e., whet
S8(n;t)2S9(n),0 for somex value. An intersection repre
sents a single seismic event and starts with the collision
two asperitiesof the profiles. The energy released is assum
to be proportional to the breaking area of the asperities,
the extension of the hypersurfaces, in general of dimens
(d21), involved in the collision of the asperities during a
earthquake. In the cased52 the energy released is given b
the sum of the lengths of the two segments indicated w
A andB in Fig. 2.

~iv! We do not allow the development of new eart
quakes in a region where a seismic event is already tak

FIG. 1. Fault planes realized by two Brownian profiles put
contact at one point.

FIG. 2. Sketch for the definition of the energy released dur
an earthquake. It is assumed proportional to the breaking area@the
(d21)-dimensional setsA and B# between the two asperities:E
}A1B.
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56 1349EARTHQUAKE STATISTICS AND FRACTAL FAULTS
place, i.e., with reference to Fig. 2, we do not take into
count the earthquakes which eventually take place in reg
A and B of the two profiles, untilA and B have a nonzero
overlap.

Rule ~iii ! is a consequence of the proportionality betwe
the energy released during an earthquake and its seismic
mentumM0 , which, according to standard geophysical de
nitions, can be written as

M05E
A
mS dA, ~4!

wherem is the rigidity modulus of the medium under co
sideration,S is the displacement of the fault during the ear
quake, andA is the rupture area. If we considerm as a
constant along the fault one has

M05mA
1

A E
A
S dA5mAS̄. ~5!

M0 is then proportional to the average displacement o
fault during an earthquake. The bigger the pressure exe
on the asperity, the bigger will be the displacement of
fault. A measure of the pressure necessary to break an a
ity is given by its dimension. One then supposes that
average displacement is proportional to the dimension of
asperity broken during an earthquake. The formula~5!,
which is an approximation valid for wavelengths greater th
the source dimension, would predict a behaviorM; l 3

whereas with our assumption we haveM; l 2. Nevertheless,
we have to take into account that the breakings never exc
the crust thickness and, by analyzing the big earthqua
one deduces that the vertical dimension is practically c
stant. One can then assumeM; l 2, which agrees with our
hypothesis in the realistic cased53. It is obviously possible
to consider more sophisticated schemes and the work a
these lines is still in progress.

With these rules, the motion of the two profiles simula
the slipping of the two walls of a single fault. The points
collision are the points of the fault where the morpholo
prevents the free slip: these are the points where there i
accumulation of stress and, consequently, a raise of pres
When the local pressure exceeds a certain threshold, a b
ing takes place, an earthquake, which allows relaxation
the stress to relax and redistribution of the energy, previou
accumulated, all around. We assumed that the region
tween the two sliding profiles of the fault is empty or fille
by a granular medium, consistent with the observation t
the fault gauge is a zone of fractured rocks. According to
paper by Herrmann, Mantica, and Bessis@20#, one could
think of this granular medium as being composed of ro
bearings between the two surfaces. The existence of a l
region between the two rough surfaces could then be rel
to the so-calledseismic gap, namely, an extended area whe
two tectonic plates can creep on each other without prod
ing either earthquakes or the amount of heat expected f
usual friction forces. This zone slides and has no influe
on the dynamics due to its relatively lower viscosity.

For the sake of simplicity, in this version of the SAM
there is no real breaking of the profiles as a consequenc
an earthquake and the profiles maintain their structures a
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a crash. Thus this is a perspective which is opposite to tha
the SOC models, since the earthquake dynamics has n
fect on the structure of the profile. Realistic situations co
well correspond to intermediate cases, of course.

It is possible to introduce a more realistic breaki
mechanism where there is also a modification of the aspe
form after an earthquake. We will discuss this possibility
Sec. V and we will show there how it is possible, in th
framework, to reproduce Omori’s law.

It is worthwhile to stress that the SAM exhibits a stron
nonlocality since a collision at a pointx at the timet can
trigger, at a later time, a subsequent event also very far aw
One of the main advantages of the SAM consists in the p
sibility of deriving various analytic results using the prope
ties of Brownian profiles.

III. THE GUTENBERG-RICHTER LAW
AND THE NONUNIVERSALITY

OF THE b EXPONENT

In 1956, Gutenberg and Richter@1# noticed the depen-
dence of earthquake frequency on their magnitude:
greater the magnitude, the smaller the frequency. The r
tion between the frequency and the magnitude of ea
quakes is

log10N~M.m!5a2bm, ~6!

whereN(M.m) is the number of earthquakes with a ma
nitude greater thanm while a and b are two empirical pa-
rameters. Theb value is generally in the range 0.8,b,1.4
depending on the Earth’s region considered and the st
level of the region itself.

Relation ~6! is the most important statistical represen
tion of seismicity and the understanding of the underlyi
mechanisms is of fundamental importance for the comp
hension and forecasting of earthquakes. Several studies
been made to understand the origin of the universality of
Gutenberg-Richter relation but, despite the simplicity of th
relation, there is no understanding of the underlying mec
nisms. Theb value might depend on three factors:~1! the
geometrical properties of the fault,~2! the physical properties
of the medium, and~3! the stress level of the seismic regio
In this section we show that, in the framework of the SAM
the b value is essentially determined by the fault geome
and in particular by its fractal dimension. The magnitu
M is not the only indicator of the earthquake strength; a
other quantity used to describe the earthquake intensity is
seismic momentM0 that we have defined in Eq.~4!. From
dimensional analysis it is obvious that the energyE released
by an earthquake is proportional to its moment. There is
empirical relation between the seismic moment~or energy!
and the magnitude:

log10E5cM1d, ~7!

whereE is the released energy. From Eqs.~6! and ~7! we
easily obtain the energy distribution for earthquakes:

P~E!;E2b21, ~8!



an

d

in

ou

as
th
n
e
e

pe
e
b

e
f

n
h

a

h

ex-

the

l

od

n

lt
so

e
e of
e

e-
au-
a
-

ng
stri-

1350 56R. HALLGASS et al.
whereP(E) is the probability of an earthquake releasing
energyE andb5b/c.

In order to describe the seismic phenomenology a mo
for the fault slip has to verify Eq.~8!: we thus will study the
energy distribution for the model defined in the preced
section~SAM!.

The numerical simulations provide clear evidence that
model exhibits the Gutenberg-Richter law~8!, see Fig. 3. As
we have defined in the preceding section, the energy rele
during an earthquake is essentially given by the length of
superposition between the fluctuations of the two self-affi
profiles. Remembering that the difference between two s
affine profiles is a self-affine profile itself, we can consid
only the profile given by the difference between the up
profile and the lower profile: the energy distribution will b
simply the length distribution of the segment obtained
intersecting the difference profile with a straight line.

If we consider a fractal ensemble having a dimensionD
5d2H embedded in ad-dimensional Euclidean space, th
intersection between the ensemble and a hyperplane o
mensiond21 will be an ensemble of dimension by@15#:

D5~d2H !1~d21!2d5d2H21.

Therefore the average extension of the hyperareas give
the intersection between a self-affine hypersurface and a
perplane will be

^a&L;AH/d21, ~9!

where the subscriptL indicates that we are considering
portion of the hyperplane of extensionA;Ld21. By virtue
of the self-affine nature of the considered ensemble, the
perareas distribution will be

d~a!;a2b21.

FIG. 3. Number of earthquakes releasing an energyE vs E for
roughness indexH5
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From the preceding equation we can compute the mean
tension of the hyperareas:

^a&L;E
0

Ld21

a2bda;L ~d21!~12b!. ~10!

By comparing Eqs.~9! and ~10!, one gets the relation be-
tween the exponentb of the Gutenberg-Richter law ind
dimensions and the Hurst exponent which accounts for
fractal properties of the faults:

b512
H

d21
. ~11!

In the three-dimensional case one has

b512
H

2
, ~12!

with bP@1
2,1#.

In order to check Eq.~11! we have performed a numerica
experiment ind52. Figure 4 reports the results of theb
value, as a function of the Hurst exponent, which are in go
agreement with the expected relationb522H. The depen-
dence ofb value on the roughness of the faults could the
account for the nonuniversality of theb value which would
reflect the variability of the fractal dimension of the fau
profiles around the world. In this perspective one could al
try to relate theb value to the age of a given fault profile. By
supposing that the effect of the fault slipping and of th
earthquakes is a smoothing of the profiles, i.e., an increas
H, one could guess that the older the fault profile, th
smaller theb value.

IV. SPACE-TIME DISTRIBUTIONS OF EPICENTERS

Let us now try to analyze the problem of the spac
temporal clustering of the earthquake epicenters. Many
thors@3,21,22# pointed out that the epicenter tends to cover
fractal set with a fractal dimension which is a highly irregu
lar function of space and time. One of the most interesti
features is represented by the evidence that the spatial di

FIG. 4. Exponentb11 vs the Hurst exponentH for the SAM in
d52.
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56 1351EARTHQUAKE STATISTICS AND FRACTAL FAULTS
bution of the epicenters along a linear seismogenetic st
ture seems to exhibit self-similar properties. Results of
same kind have been reported for single ‘‘transform’’ faul
This could lead to the conclusion that the nonhomogeneit
the spatial distribution of the epicenters is due to some
culiar phenomenon occurring also in a single linear fault a
just partly to the fractal distribution of the faults.

Similar properties are exhibited by the temporal distrib
tion of events with a nonhomogenous structure, made of
riods of quiescence and bursts of activity. Along the sa
region there could be subregions with nonhomogeneous
also very different behaviors.

Thanks to the simple dynamics of the SAM it is possib
to study, whether analytically or numerically, the compl
space-time distribution of the epicenters. Operatively
space location of an epicenter is defined in corresponde
with the first point of contact of the two colliding asperitie
belonging to the two profiles.

As far as spatial distribution of earthquakes is concern
our simulations provide good evidence of a spatial cluster
of epicenters on a set with fractal dimension smaller than
In particular, we obtained a value of the fractal dimens
dep in the rangedep.0.8– 0.9 forH varying in the interval
@0.3,0.7# and for different lengths of the system betweenL
51000 and 50 000.

By numerical analysis of the model the values ofdep seem
to decrease with increasingH and seem to remain nearl
constant with respect to variations of the system dimens
and of H. These results are not immediately explicable;
the fault profiles could slip for an infinite time, in fact, eac
point of the inferior profile could be, theoretically, an epice
ter because it, sooner or later, would be hit by an asperit
the superior fault profile. In this way we would have th
limt→`dep5 limL→`dep51, and the set of epicenters thus b
comes a compact set. This intuitive idea turns out to be c
rect since the observed noninteger fractal dimension is a n
trivial finite-size effect. It is possible to show analyticall
for H50.5, that the fractal dimensiondep(L) of the epicenter
set in a fault of linear sizeL is

dep~L !.12
g ln lnL

lnL
for large L. ~13!

We will sketch here the main lines of the proof, referring t
reader for further details to Appendix A.

First of all it is worthwhile to remember that, according
the definition of the SAM, in order to obtain an infinite ev
lution of the system we necessarily need two fault profi
with a lengthL, which tends to infinity. One has first t
create the two profiles separately and then to put them
contact. This is because the average distance between
two profiles tends to increase asL→`.

In full generality, with reference to Fig. 5, calle
^S8(n)&5S08 , ^S9(n)&5S09 , and h05maxjP$1,...,L%$S8( j )
2S9( j )%, one has, from Eq.~2!, ^S9(n)&5S091h0 and set-
ting, without loss of generality,S085S0950,

^S9~n!2S8~n!&5h0 . ~14!

The idea we want to use is that the number of epicen
NE , for sufficiently large systems, will be proportional to th
c-
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number of points of the inferior profile,N(h,L), with a
heighth between the minimum valuehmin of the upper fault
trace, and the maximum valuehmax of the lower one, as
shown in Fig. 5:

NE~L !;E
hmin~L !

hmax~L !

N~h,L !dh, ~15!

whereN(h,L), for big values ofh, can be written as

N~h,L !;AL exp~23h2/4hL !, ~16!

where 3h/4 is a constant dependent on the variance of
variables$xi% used to generate the profile. By inserting E
~16! into Eq. ~15! one has

NE~L !;ALE
hmin

hmax
expS 2

3h2

4hL Ddh. ~17!

Let us find an estimate of thehmin andhmax values in the
limit L→` and consider the two faults to be Brownian pr
files (H5 1

2) with lengthL.
In our case the variables$Xi%$Yi% which compose the

profiles are random variables with zero mean and varia
s25 2

3. So the variables $X̄i%5A3/2$Xi% and $Ỹi%
5A3/2$Yi% will be random variables with zero mean an
unitary variance. To these variables we can apply the
called iterated logarithm theorem~ILT ! @23#. It states that,
for a partial sumSk5( i 51

k wi of identically distributed ran-
dom variables$v i% with ^wi&50 and variances2[^v i

2&
51, it holds that

PS lim
k→`

sup
Sk

A2k ln lnk
51D 51, ~18!

whereP(A5a) is the probability for the variableA to have
the valuea. For the H5 1

2 case we can also writeSinf(k)
5( i 51

k Xi and Ssup(k)5h01( i 51
k Yi , where $Xi% and $Yi%

are uniformly distributed variables with zero mean, stand
deviations25 2

3, andh05max;i((k51
i Xi2Yi).

By using the ILT with profiles built with the normalized
variablesX̃i and Ỹi one obtains

FIG. 5. Scheme illustrating the region of heights@hmin ,hmax# in
which the occurrence of collisions between asperities is poss
h0 is a function of the lengthL of the profiles and indicates thei
average distance.
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lim
L→`

sup
nP@1,L#

$S8~n!%5
2

A3
AL ln lnL,

~19!

lim
L→`

inf
nP@1,L#

$S9~n!%52
2

A3
AL ln lnL.

One has also

inf
nP@1,L#

$S8~n!%5h01 inf
nP@1;L#

$S9~n!%. ~20!

By defining the stochastic variables$Zi5Xi2Yi% it will be,
by definition,

h05 sup
nP@1,L#

H (
i 51

n

ZiJ . ~21!

The variables$Zi% have zero mean and variances25 4
3. So

we can apply the ILT to the variablesZ̄i5()/2)Zi by get-
ting

h05
2A2

A3
Aln lnL. ~22!

By comparing Eqs.~19!, ~20!, and ~22! one easily gets the
expressions forhmin andhmax:

hmin5
2

A3
~A221!AL ln lnL,

~23!

hmax5
2

A3
AL ln lnL,

and, inserting these expressions in Eq.~17! and making a
change of variables,

NE~L !;LE
~A221!AL ln lnL

AL ln lnL
e2t2/2hdt5LI ~L !, ~24!

where I (L) is an integral which tends to zero in the lim
L→`. We are interested in how this integral goes to zer

The ‘‘average theorem’’ for continuous function stat
that it will be possible to find at̃5g(L)A2 ln ln L, with
g(L)P]&21,1@ , in such a way that

NE~L !;Le2 t̃ 2/2hDt;
L

~ lnL ! g̃ 2~L !/h
, ~25!

where Dt is the integration interval andg̃(L) is the limit
value ofg(L) and we have neglected all the terms divergi
slower than the logarithm.

Using the mass-length definition of fractal dimension,

dep5 lim
L→`

lnNE~L !/ lnL, ~26!

we obtain the relation

dep.12h*
ln lnL

lnL
1OS ln ln lnL

lnL D , ~27!
where h* is the mean value ofḡ2(L)/h(L). This implies
that, according to what we had forewarned, limL→`dep51,
and thus that the fractal nature of the spatial distribution
epicenters is due to the fault finite size. The asymptotic va
dep51 is reached very slowly at increasingL and it cannot
be detected except by means of huge simulations. We h
checked the validity of Eq.~27! for profiles with a linear size
L varying in the range 102– 106. Work is in progress to
extend our results to the case of a generic roughness in
H.

Let us now discuss the temporal correlations of ear
quakes and, in particular, the problem of the 1/f noise. A
system is said to exhibit 1/f noise when its power spectrum
scales as

S~ f !;
1

f a , ~28!

with a smaller than 2. The interest in 1/f noise lies in its
ubiquity in nature. 1/f noise has been detected in systems
diverse as resistors, the hourglass and the flow of rivers o
cars in a traffic system. Even though much work has b
devoted to this topic it is still lacking a general theory th
explains the widespread occurrence of 1/f noise.

The fact that the power spectrum is connected to the
tocorrelation function by the Wiener and Khintchin theore
leads some authors to the idea that the presence of thef
noise indicates the presence of self-similarity in the distrib
tion of correlation times.

The autocorrelation function is usually defined as

C~ t !5
^E~ t1t0!E~ t0!&

^E~ t0!&2 21, ~29!

whereE(t) in our case represents the energy released by
earthquake which occurred at timet and the averages ar
taken over the distribution of timest0 . If the energy presents
a power-law distribution with an exponent greater than22,
as in our case, the average^E(t)& will depend on its maxi-
mum value and then on the system dimension. We wo
have, in this way, a nonconsistent procedure to calculate
autocorrelation function. In order to overcome this difficul
one can use an alternative definition of the autocorrela
function which is independent of the scale of the system
we define it as

C~ t !5^E~ t1t0!E~ t0!& ~30!

it is possible to show@24# that the power spectrumS( f ) is
linked to the Fourier transformation ofC(t), ^uEf u2&, by the
relation

^uEf u2&5S~ f !11/N, ~31!

whereN represents the dimension of the system. We h
also

S~ f !5(
f 8

^uEf 8u
2&u~W~ f 2 f 8!u2, ~32!
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56 1353EARTHQUAKE STATISTICS AND FRACTAL FAULTS
where the functionW( f ) takes into account the finite dimen
sion of the system and tends to the delta functiond~0! for an
infinite system. IfN is big enough, one has

S~ f !.^uEf u2& ~33!

and one can study the power spectrum by simply analyz
the Fourier transform of the autocorrelation function~30!.

In our numerical simulation we have studied this functi
and the results, shown in Fig. 6, gave

S~ f !; f 2a, ~34!

with a>1.2. This means that our model exhibits 1/f noise,
i.e., there is no maximum autocorrelation time and a seis
event may be influenced by another one very distant in ti

V. THE GENERALIZED SAM

Up to now we have studied a version of the SAM cor
sponding to the limit of infinite rigidity of the faults. The
fault profiles are not modified by the seismic activity and o
studies the statistics of earthquakes in the hypothesis
there is a complete time-scale separation between the se
activity and the rearrangement of the Earth’s crust. The la
would develop in very long times with respect to the scale
human records and this would justify the assumption.

We have shown how this model exhibits a good interp
tation of the seismic phenomenology in a global sen
Gutenberg-Richter law, epicenter clustering. What is lack
is the description of what happens locally, i.e., as a con
quence of a single event, from both the temporal and
spatial points of view. In particular, it is not possible to o
tain in such a scheme Omori’s law for the distribution
aftershocks. These events are related to the situation in
neighborhood of the main shock epicenter after the occ

FIG. 6. Power spectrum~solid line! for the temporal sequence o
earthquakes in the SAM. It shows a 1/f behavior with an exponen
a.1.2 corresponding to the slope of the dashed line.
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rence of the main shock. They are ruled by the followi
empiric relation@2#:

N~ t !;
1

~ t1c!a , ~35!

whereN(t) indicates the number of earthquakes which o
curred at timet after the main shock,c is a constant, anda
is an exponent whose value ranges in the interval@1.0–1.4#.
For long enough timest one usually supposest@c and the
functional form of N(t) given by a pure power lawN(t)
;t2a.

In this section we improve the model in order to inclu
the rearrangement of the Earth’s crust as a consequenc
the occurrence of an earthquake. With this modification i
possible to describe the local phenomenology of seismi
and, in particular, to reproduce Omori’s law.

The model is modified by considering the asperity bre
ing in the collisions. When two asperities collide a fracturi
process starts in the smallest asperity~that one with the
smallest section at the level of the epicenter!. The fracture
propagates inside the fault until it again crosses the fa
profile. At this point the fracture stops and the resulting co
figuration represents the new fault profile in the region
volved in the earthquake. The magnitude of the earthquak
assumed to be proportional to the linear extension of
fracture.

In Fig. 7 is shown an example of a fracturing proce
during an earthquake. The shadowed region is removed f
the fault profile. The statistical properties of the fracture a
supposed to be identical to those of the entire fault profi
This means that one has to consider a self-affine profile w
the same Hurst exponent of the original fault.

In our simulations, we considered, for the sake of simp
ity, the case of a Brownian profile withH50.5. Let us note
that an earthquake at a certain point can trigger several o
earthquakes, with smaller magnitude, which occur in
same region or in a very close region. In order to investig
the statistics of the aftershocks we identified all the afters
cls occurring after a certain main shock in the rupture regi
A main shock is defined as an earthquake above a ce
magnitude~in our simulations an earthquake involving
least 100 sites!. Starting from this event one counts, as
function of the time elapsed from the main shock, the nu
ber of earthquakes, with a magnitude smaller than that of
main shock, occurring in the same region. One stops
counting when an earthquake with a magnitude greater t
or equal to the main shock occurs.

FIG. 7. Scheme illustrating the mechanism for the breaking
the asperities in the generalized SAM. When there is a collis
between two asperities the weaker is broken. The shadowed re
defines the broken area and the new profile after the collision.
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1354 56R. HALLGASS et al.
We have studied the behavior of the cumulative distrib
tion of aftershocks, i.e., the numberNcum(t,T) of earth-
quakes occurring beforeT time steps after the main shoc
By averaging over many realizations~of the order of 102! we
have obtained the curve reported in Fig. 8 that exhibits
Omori scaling law~35!. For values oft large enough one ha
the power law

Ncum~ t,T!;T12a, ~36!

with the exponenta>0.37. The numerical value of the ex
ponenta is not in good agreement with real values. Ho
ever, we have just considered the case of a one-dimens
profile embedded in a two-dimensional space and the m
considers only one isolated fault, thus neglecting the effe
of interaction among different faults. It would be interesti
to study what happens considering the case of a t
dimensional surface too.

This generalized SAM recalls the work of Herrman
Mantica, and Bessis@20# on the space-filling bearing. Th
analogy lies in the fact that one could think of the interspa
between the two fault planes as filled by a granular med
which is also composed by the broken asperities of the fa
The link is made closer by the fact that in our case the d
tribution of areas of the asperities broken follows a pow
law

P~Aasp!;Aasp
2d , ~37!

with an exponentd which could be related analytically to th
roughness exponent by the relation

d52
1

11H F22HS 22d

d21D G , ~38!

which in d52 takes the value

FIG. 8. Cumulative distribution for the aftershocks:N(t,T) is
the number of aftershocks, events causally connected to the
shock, which occurred up to the timeT, elapsed from the main
shock time.
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d5
2

11H
. ~39!

Relation ~37! is obtained by supposing that the area of t
broken asperities scales with its linear extensionl as Aasp
; l 11H by a standard variable change. Work in this directi
is still in progress and we plan to report on it in future@25#.

It is obviously possible to consider more realistic gen
alizations of the breaking mechanism, in which the appli
tion of the pressure at a certain point causes the breakin
a different point, mimicking, in this way, the effect of th
stress redistribution in the medium. This situation is, in
turn, a simplification with respect to the ideal case in whi
one has to calculate, at each time step, the new stress fie
the whole medium as a consequence of the changed pre
conditions.

VI. CONCLUSIONS AND PERSPECTIVES

In summary, we have proposed a model of earthqua
where the critical behavior is generated by a preexistent f
tal geometry of the fault. The statistics of earthquakes is t
related to the roughness of the fault via the scaling relat
~2! between critical indices. This result suggests that
younger the fault system, the larger theb exponent is, since
one expects that the roughness of a fault decreases in
logical times. Note that in this case, the exponentb is non-
universal. Another major result is that the fractal distributi
of the epicenters could be a finite-size effect very difficult
detect from data analysis. In our case our results provid
possible explanation for the highly irregular and nonrand
distribution of epicenters that is observed experimenta
Last but not least, the accumulation of pressure is at the v
origin of large seismic events in the SAM. The presence
such an effect could be tested also in real situations, e.g.
piezoelectric measurements.

Moreover, we introduced a generalization of the SA
which includes the effect of the breaking of the asperities
contact during an earthquake. This makes the model m
more realistic and allows for the interplay between ear
quakes and structural properties of the faults. This version
the model exhibits a nontrivial distribution of aftershoc
which follows Omori’s law.
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APPENDIX A: STATISTICS
OF FRACTIONAL BROWNIAN MOTIONS

In this appendix we review the main properties of t
so-called fractional Brownian motions, which represen
generalization of the Brownian motion@15,26,27#.

A FBM FH(t) is defined as a monodrome function of on
variable t, such that its incrementDFH(Dt)5FH(t1Dt)
2FH(t) has a Gaussian distribution with variance

s25^DFH
2 ~Dt !&;Dt2H, ~A1!

in
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where the brackets indicate the average over many rea
tions of FH(t). The parameterH is the so-called Hurst ex
ponent and takes values between 0 and 1. The main pro
ties of those functions can be summarized as follows:~1!
they are stationary, i.e., the average square increment
pends only on the increment of the argumentt and all the
values of this argument are statistically equivalent;~2! they
are continuous functions but nowhere differentiable; and~3!
they are self-affine curves, i.e., if the time scale is resca
by a factorr , the corresponding incrementDFH(t) is res-
caled by a factorr H:

^DFH
2 ~rDt !&;r 2H^DFH

2 ~Dt !&. ~A2!

The FBM are self-affine curves which present a bo
covering dimension equal toDF5d2H. Let us consider, for
the sake of simplicity, the cased52 and suppose tha
FH(t) is defined in a time intervalDt51 with a vertical
extensionDFH(t)51. If one rescales the time by a factorr
,1, then, by virtue of the self-affinity,FH(t) will be res-
caled by a factorr H. Thus in order to cover a section o
curve extending in the intervalDt5r one needsDFH /Dt
5r H21 boxes of linear dimensionr and for the entire profile
one will needr H21/r boxes. So recalling the definition o
box-covering dimension

DF5 lim
r→0

lnN~r !

ln1/r
~A3!

one has

DH5 lim
r→0

lnr H22

ln1/r
522H. ~A4!

In the generald-dimensional case one can define the Brow
ian hypersurface as a function ofn5d21 variablesXi , i
51,...,n such that

^DFH
2 ~Dr !&;Dr 2H, ~A5!

with Dr 25DX1
21•••1DXn

2.
The box-covering fractal dimension is then defined as

DF5n112H5d2H. ~A6!

Here is a last word about the intersection of a FBM w
a line parallel to the temporal axis~fractal dimensionD1!
and lying in the same plane of the Brownian profile~fractal
dimensionD2!. In this case, by using the law of additivity o
the codimension,

D05D11D22d, ~A7!
a-

er-

e-

d

-

-

whereD0 is the fractal dimension of the intersection set, t
zero set. In our case one hasD15d21 andD25d2H and
then

D05d212H. ~A8!

The set of zeros of a Brownian profile ind52 with a generic
vale of the Hurst exponentH is then a set of points whos
fractal dimension isD0512H.

APPENDIX B: CALCULATION OF NUMBER
OF POINTS IN A BROWNIAN PROFILE

AT A CERTAIN HEIGHT h

In this appendix we calculate the number of points that
a Brownian profile, lie at a certain heighth. From the gen-
eral properties of the Brownian profile one knows that ifh
50, this number is proportional toAL whereL is the length
of the profile. Moreover, as a consequence of the spa
homogeneity of the random walk one has

P~Sn1m50uSn50!5P~Sn1m5huSn5h!, ~B1!

where P(aub) is the conditional probability that, given
certain eventb, the eventa occurs. The number of points a
the heighth will be proportional toAL2t wheret is the first
passage time at the heighth. The first passage time distribu
tion for a heighth is known @23# to be

f h~ t !5
uhu

A2pt3
expS 2

h2

2t D . ~B2!

One then has that the number of points at the heighth is

N~h!;E
0

L
AL2t f h~ t !dt. ~B3!

Equation~B3! is a very complicated expression and we lim
ourselves to considering what happens just in the rangh
>AL. For the average theorem there will exist a valuet*
such that

N~h!;AL2t* f h~ t* !L. ~B4!

We are interested in the case ofh;AL and we can then
supposet* ;hL. One obtains

N~h!;AL expS 2
h2

2hL D ~B5!

that we used in Sec. IV.
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