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Entropy for Relaxation Dynamics in Granular Media
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We investigate the role of entropic concepts for the relaxation dynamics in granular systems.
In particular, we show how, in the framework of a mean-field model introduced for compaction
phenomenon, there exists a free-energy-like functional which decreases along the trajectories of the
dynamics and which allows one to account for the asymptotic behavior: e.g., density profile, segregation
phenomena. Also we are able to perform the continuous limit of the above mentioned model which
turns out to be a diffusive limit. In this framework one can single out two separate physical ingredients:
the free-energy-like functional that defines the phase space and the asymptotic states and a diffusion
coefficient D�r� accounting for the velocity of approach to the asymptotic stationary states.

PACS numbers: 65.50.+m, 45.70.–n
Granular media enter only partially into the framework
of equilibrium statistical mechanics and hydrodynamics.
Their dynamics constitutes a very complex problem of
nonequilibrium which poses novel questions and chal-
lenges to theorists and experimentalists [1,2].

Generally speaking granular materials cannot be de-
scribed as equilibrium systems neither from the configu-
rational point of view nor from the dynamical point of
view. It is known, in fact, that these systems remain easily
trapped in some metastable configurations which can last
for long time intervals unless they are shaken or perturbed.
A granular system may be in a number of different mi-
croscopic states at fixed macroscopic densities, and, more
in general, for a given ensemble of macroscopic parame-
ters. Many unusual properties are linked to this nontrivial
packing [1]. The configurational space of these systems
is very complex and presents a structure with several local
minima. This structure induces a dynamic behavior char-
acterized by hierarchical relaxation phenomena with sev-
eral associated time scales. A general mechanism bringing
to the existence of such a structure is based on the concept
of frustration that, for instance, in granular media has a
geometrical origin. The existence of complex geometrical
interactions between the grains induces a rough landscape
in the structure of the allowable phase space and in the
configurational entropy. In their turn these effects induce
the need of complex cooperative rearrangements which
account for the very slow relaxation dynamics of these
systems. At high densities (or very low temperatures for
thermal systems) the system remains trapped in a local
minimum and exhibits a nonergodic behavior as well
as very slow relaxations: the logarithmic compaction in
granular media [3–7] or the Kohlrausch-Williams-Watts
(KWW) relaxations in glassy systems [8].

In this paper we try to elucidate the role that the concept
of entropy can play in the dynamics of these systems. In
particular, we show how, in the framework of a mean-field
model introduced for the compaction phenomenon, there
exists a free-energy-like functional which decreases along
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the trajectories of the dynamics and which allows one to
account for the asymptotic behavior: e.g., density profile,
segregation phenomena. Furthermore the continuous limit
of the above mentioned models allows us to comment on
the relationship between entropic and dynamical effects
in explaining the relaxation phenomena in granular media
[2,9,10].

We consider a simple model which describes the evo-
lution of a system of particles which hop on a lattice
of k � 0, . . . , N stacked planes, as introduced in [6]. In
particular, the system represents an ensemble of particles
which can move up or down in a system of N layers in
such a way that their total number is conserved. We ig-
nore the correlations among particle rearrangements and
problems related to the mechanical stability of the system.
The master equation for the density on a generic plane k,
except for the k � 0 plane, is given by

≠trk � �1 2 rk�D�rk� �rk21pup 1 rk11pdown��

2 rk��1 2 rk21�D�rk21�pdown

1 �1 2 rk11�D�rk11�pup� , (1)

where pdown and pup (with pup 1 pdown � 1) represents
the probability for the particles to move downwards or
upwards, respectively, among the different planes. With
pup and pdown we can define the quantity x � pup�pdown
which quantifies the importance of gravity in the system.
We can also associate with x a sort of temperature for the
system given by T � 1� log�1�x�. We shall return to this
point later on.

D�rk� represents a sort of mobility for the particles
given by the probability that the particle could find enough
space to move. Apart from other effects it mainly takes
into account the geometrical effects of frustration, i.e., the
fact that the packing prevents the free movement of the
particles.

Later on we shall show how the analysis reported here is
very general and does not depend on the exact functional
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form chosen for D�r�. For the sake of clarity before
discussing the problem in its generality we shall consider
a possible functional form for D�rk� suitable for the
compaction problem. In a naive way one could imagine
a functional form like D�rk� � rk�1 2 rk0� obtained by
considering only the interactions with the nearest neighbor
planes whose density is designed by rk0 . It is easy to
realize that such an approach does not account for the
complexity of the problem where the packing at high
densities creates long range correlations in the system, and,
using this functional form, the equations show a trivial
relaxation. A possible general form of D�rk�, which can
be seen as the outcome of a theory based on the existence
of regions of cooperativity [11] (as well as of a free-volume
theory [5,7]) for granular media, includes a term like

D�rk� � D0 exp�2a��1 2 rk�� . (2)

The parameter a quantifies how much the shape and the
dimensions of the particle frustrate its motion. The higher
is a the higher will be the geometrical frustration felt by
the corresponding particle. For instance, in the problems
of parking of r-mers (i.e., segments of length r) on a
line, under the hypothesis of an exponential distribution
for the lengths of the empty (or filled) intervals, the
probability for each r-mer to find a sufficient space to land
is exp�2r��1 2 r��, where r is the occupation density on
the line [5].

The question we want to address is whether there exists
a variational principle driving the relaxation phenomena
in this system and in general in granular media. In other
words, one could ask if, in analogy with what happens for
a liquid system, there exists some free-energy-like func-
tional minimized (Lyapunov functional) [12] by the dy-
namical evolution. In a very general way it is possible to
write explicitly a Lyapunov functional for the system of
equations (1), say, the functional which decreases mono-
tonically along the trajectories of the motion. This func-
tional can be cast in the form of a free-energy-like function:

F �
X̀
k�0

�g�x�krk 2 S�rk�� , (3)

where the S�rk�, the entropiclike contribution, and g�x�
have to be determined in a self-consistent way by imposing
that F decreases for any exchange of particles between
two generic planes k and k 1 1. Writing explicitly the
expression for dF for a generic particle exchange and
imposing dF # 0, for the particular choice of D�rk� we
made, after some manipulations one gets for the functional
(3) the expressions

S�rk� � rk log

µ
1 2 rk

rk

∂
, g�x� � log

µ
1
x

∂
. (4)

Let us stress how S�rk� has exactly the same (critical)
behavior, as rk ! 1, of the entropy of a one-dimensional
continuous system, filled with bars of unitary length at a
certain density r. The functional F is a concave function
because ≠2F�≠r

2
k $ 0 ; k [13].
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As a consequence there exists a unique minimum for
this functional, and this minimum should correspond to
the stationary state of the system. In the case of a
monodisperse system we expect that the stationary state
(i.e., the density profile for the system) is the one obtained,
in a continuous process of shaking, after a very long
transient.

In the general case with arbitrary N , and for N ! 1`,
it is possible to get the exact asymptotic stationary solution
for the density on each plane. We denote with M the total
“mass” of the system, i.e., the maximal number of planes
which can be completely filled. Using a standard Lagrange
multiplier method, where one tries to find the extremum
of F subject to the constraint

P
k rk � M, the solution is

given by the following implicit expression:

f�rk� � f�r0�xk , (5)

where

f�s� �
s

1 2 s
e1��12s�, (6)

and r0 is the density on the zeroth plane which is a
complex function of the total mass of the system. In
order to visualize the solution it is possible to extract the
approximate explicit behaviors. In particular, one gets

r`
k � 1 2 1���M 2 k� log�1�x�� for k ø M , (7)

r`
k � e�M2k� log�1�x� for k ¿ M . (8)

The stationary solution tends thus to a step function
u�k 2 M� in the limit x ! 0. This behavior is very well
verified in the experiments [14].

Let us now ask what happens considering a bidisperse
system, i.e., by considering two kind of particles defined
by two different values of a (as � 1, ab � a � 2 in
the specific case). In the case the master equations for the
densities r

b
k and r

s
k on a generic plane k, except for the

plane k � 0, are given by

≠tr
b,s
k � Db,s�rk� �r

b,s
k21pup 1 r

b,s
k11pdown��

2 r
b,s
k �Db,s�rk21�pdown 1 Db,s�rk11�pup� ,

(9)

where rk � r
s
k 1 ar

b
k is the total density on the kth

plane and Db,s�rk� are the probabilities for a particle s
or b, respectively, landing on the plane k, to fit the local
geometrical environment. In this sense Db,s�r� are the
analog of the mobilities for the two kinds of particles,
and they take into account the cooperative effects on
the dynamics generated by the frustration. A possible
functional form for Db,s�r� (see for a similar approach [5–
7,11]) is given by Ds�r� � �1 2 r� exp�21��1 2 r��
and Db�r� � �1 2 r�a exp�2a��1 2 r�� with a $ 1.

Let us now look for a Lyapunov functional equivalent
to Eq. (3) in this polydisperse case which now will have
the form

F �
X̀
k�0

�g�x�nrk 2 S�r
b
k , rs

k�� , (10)
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where the S�r
b
k , rs

k� is again an entropiclike contribution.
By repeating the calculation along the same lines as before
one gets
S�r

b
k , rs

k� � 2r
s
k�log�r

s
k� 2 1� 2 r

b
k �log�r

b
k � 2 1�

2 �1 2 rk� �log�1 2 rk� 2 1� 1 log�1 2 rk�

(11)
and g�x� � log�1�x�.

Even in this case the functional F is concave and there
exists a unique solution corresponding to the asymptotic
stationary state for the system. Using a standard Lagrange
multiplier method one gets the result

r
b
k � rk

h0�1 2 rk�a21e2�a21���12rk �

1 1 ah0�1 2 rk�a21e2�a21���12rk� ,

r
s
k � rk 2 ar

b
k , (12)

where h0 � h0�r
b
0 , rs

0� is a constant which can be esti-
mated by using the total mass M of the system:

h0�rb
0 , rs

0� � �1 2 r0�12ae�a21���12r0� r
b
0

r
s
0

. (13)

rk is given by a nontrivial function of k that can be ob-
tained exactly but in an implicit form. rk is a mono-
tonically decreasing function with the maximum for k �
0. Figure 1 shows an example of the asymptotic sta-
tionary solution obtained from (12) with h0 � 103 cor-
responding to x � 0.82, r0 � 1 2

c
M log�1�x� � 0.9, and

r
b
0

r
s
0

� 1.5 3 1023. In particular, it shows r
b
k and r

s
k as a

function of rk . In this way, the effect of segregation [15]
of the “big” particles (with a � 2) on top of the “small”
ones (with a � 1) is clearly visible. The introduction of
two different weights for the two species, say pb,s

up and
p

b,s
down, gives rise to a rich phase space �pb

up, ps
up, a� with

different regions corresponding to different behaviors for
segregation.

Equation (11) makes evident how in the dynamics of
granular media entropic effects are far from being negli-
gible and the global behavior is given by a complex
interplay between gravitational and entropiclike effects.

Let us now continue to push forward this point of
view and ask whether the asymptotic stationary state
corresponds to some sort of equilibrium state. At the
equilibrium, i.e., asymptotically, one would expect that for
any exchange of particles among different planes dF � 0
for the free-energy-like functional (10), or equivalently
dS�dE � 1�T � const. By defining the total energy E �P`

k�0 krk and the total entropy Stot �
P`

k�0 S�rk�, for
any exchange of particles of type b or s between the planes
k and k 1 1 one has

dS
b,s
tot

dE
�

≠S�rk11�
≠r

b,s
k11

2
≠S�rk�
≠r

b,s
k

. (14)

It is easy to realize how in the asymptotic stationary state
one has

dSs
tot

dE
�

dSb
tot

dE
� log

µ
1
x

∂
� const, (15)

or, what is the same, dS
b,s
tot

dE � const everywhere in the
system no matter which kind of particles we use for
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FIG. 1. Asymptotic density profile for the two species of
particles in the N-plane model described in the text. Clearly
visible is the effect of segregation of the more frustrated (big)
particles r

k
b on top of the less frustrated (small) ones r

k
b .

its definition. It is then tempting to associate log� 1
x �

with the inverse of a temperature for the system. The
analogy is made stronger by recalling that 1� log� 1

x � is
the usual quantity associated with a temperature in Monte
Carlo dynamics. From this point of view the relaxation
process of this system would correspond to an equilibration
procedure in which dS

b,s
tot

dE is made uniform everywhere. In
the specific case of segregation one is forced to think that
the system evolves in such a way that asymptotically all the
particles have the same mobility, measured in this case in
terms of the entropic change for every given displacement.

Let us now generalize the results obtained so far. Equa-
tion (1) represents a particular case of a general class of
equations that can be written as

≠trk � g�rk� � f�rk21�pup 1 f�rk11�pdown�

2 f�rk� �g�rk21�pdown 1 g�rk11�pup� , (16)

where f and g are generic functions for which we require
only f $ 0, g $ 0, df�dr $ 0, and dg�dr # 0. All
the results we have shown in the particular case (1) are
valid under these general assumptions. In particular, we
can prove that there does exist a functional that decreases
along the trajectories of the motion and its expression is
given by Eq. (3) with

S�rk� �
Z

rk

log
g�r�
f�r�

dr, g�x� � log

µ
1
x

∂
.

(17)
A deeper insight in the above mentioned phenomenol-

ogy is obtained by considering the continuum limit for
the model described by Eq. (16). More precisely we con-
sider a diffusive limit that consists of scaling the space
variable as 1

e , the time variable as 1
e2 , and the drift

term pdown 2 pup as e. Therefore x � ek, t � e2k�2,
pdown 2 pup � eb�2, and we consider the evolution of
u�x� � r�k�.
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We get the continuum limit by taking the Taylor ex-
pansion of the right member of Eq. (16) around x � ke.
For example, r�k 1 1� � u�x 1 e� � u�x� 1 e≠xu 1
1
2 e2≠xxu 1 O�e3�.

We get, formally,

≠tu�x� � b≠x� fg� 1 �g≠xxf 2 f≠xxg� 1 O�e� ,

(18)

which, in the limit e ! 0, gives

≠tu�x� � b≠x� fg� 1 �g≠xxf 2 f≠xxg� . (19)

This is a nonlinear diffusion equation that may be conve-
niently written in the following form:

≠tu � ≠x

µ
D�u�≠x

≠F
≠u

∂
, (20)

where D � fg, ≠F
≠u

denotes the functional derivative of
F with respect to u, F �

R`
0 �bux 2 S�u�� dx, and S0 �

log� g
f �. Notice that the functional F decreases with the

dynamics induced by Eq. (19). One has, in fact,

≠tF �
Z

dx
≠F
≠u

≠tu �
Z

dx
≠F
≠u

≠x

µ
D�u�≠x

≠F
≠u

∂

(21)

that, after an integration by parts, gives

2D�u�
µ

≠F
≠u

∂2

# 0 . (22)

Therefore there exists a “free energy”-like functional F for
Eq. (20) which has exactly the same form of the functional
defined for the discrete model [see Eq. (17)]. We can
notice that while the functional form of S and the value
of b determine in a unique way the asymptotic state they
are not sufficient to determine the dynamical behavior of
the system. In particular, in order to know it one should
know the functional form of D�r�.

What we have discussed so far suggests the possibility
of introducing, for nonthermal systems as granular media,
equilibrium concepts as free-energy, entropy, and tempera-
ture. More precisely it is possible (in the case studied here)
to predict the asymptotic state by means of the minimiza-
tion of a suitable functional which can be constructed by
entropic arguments. It is worth stressing how granular sys-
tems often exhibit memory and so the existence of a unique
Lyapunov functional is not guaranteed in general. In gen-
eral one could expect that several Lyapunov functionals
are associated with different stationary states reached with
different dynamical paths.

Finally, let us notice how Eq. (20) allows us to comment
on the relationship between entropic and dynamical effects
in explaining the relaxation phenomena in granular media.
Once the Lyapunov functional is known (and thus also
the entropic properties of the system) it is possible to
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predict the asymptotic state. However, one cannot specify
whether the asymptotic state is reached in a finite time
unless one knows the connectivity properties of the phase
space, which in our case corresponds to know D�r�.
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