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Abstract

We analyze the non-equilibrium relaxation properties of granular materials in the perspective
of a cooperative length approach of Adam and Gibbs. The existence of complex geometrical
interactions between the grains induces a rough landscape in the structure of the allowable
phase space and in the con�gurational entropy. At their turn these e�ects induce the need of
complex cooperative rearrangements which account for the very slow relaxation dynamics of
these systems. On this basis we relate quantitatively the characteristic dynamical properties to
quasistatic quantities, e.g. free-volume and con�gurational entropy. c© 1999 Elsevier Science
B.V. All rights reserved.
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Granular matter represents a very rich research �eld which just recently started to
interest people form statistical mechanics and physics in general [1–3]. In spite of
our habit to handle them in our daily experience, granular materials show a very rich
variety of features and unexpected behaviors, most of which are just barely understood
in terms of basic physics principles. Compaction phenomena under vibration [4–12]
segregation of di�erent species [13], non-trivial properties of piling, very irregular stress
distributions [14] are just few examples of this rich phenomenology.
In this paper we focus on the non-equilibrium dynamical properties of these non-

thermal systems trying to make a bridge between some quasi-static properties and
the corresponding relaxation behaviors. From this point of view it is worth to recall

∗ Corresponding author. Fax: +33-1-40794523; e-mail: loreto@pmmh.espci.fr.

0378-4371/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(98)00660 -8



312 E. Caglioti et al. / Physica A 265 (1999) 311–318

how much emphasis has been put on the close similarity of the relaxation proper-
ties of granular materials with the corresponding features of glassy systems [5–7,14
–17]: slow-relaxations, divergence of the characteristic times, hierarchical structure of
the accessible phase space, etc., are terms related to the phenomenology of granular
media.
We thus try to identify the main ingredients which could account for these

non-equilibrium properties. In this perspective we stress how geometry plays a crucial
role in these non-thermal systems, many interactions between the grains being of ge-
ometrical origin (either like repulsive hard-core forces or entropically, always due to
geometrical reasons, attractive forces). Generally speaking the introduction of whatever
degree of frustration (quenched or annealed), say the di�culty for the particles to �nd
the close packing con�guration, makes some con�gurations forbidden, so inducing a
drastic reduction of the volume of the allowable phase space. These modi�cations of
the entropic properties of the system induce a hierarchy in the dynamics of the system
which implies the need of cooperative rearrangements of the particles in order to allow
a single grain displacement.
When the density increases the length associated to the cooperative region diverges

and the system exhibits a glass transition which can be related to the so-called
Reynolds-dilatancy transition.
Starting from this point it is possible to relate many non-equilibrium properties

to con�gurational entropy and to excluded-volume (or equivalently free-volume [11])
e�ects.
The outline of the paper is as follows. We �rst develop a cooperative length approach

inspired by the Adam–Gibbs theory for Glass–Forming liquids [18]. This approach al-
lows us to estimate the relaxation time of a system whose con�gurational space reects
the presence of a certain degree of geometrical frustration. After having pointed out
the relationship with the free-volume based theories we show in detail how complex
relaxational behaviors arise as a consequence of the Vogel–Fulcher structure of the
relaxation time. This relaxation obeys a logarithmic decay followed by an exponen-
tial one. Finally, we remark how in the case of the so-called Tetris-like models one
observes the aforementioned phenomenology.
It is well known that by applying a sequence of taps to a granular system, the density

relaxes logarithmically to its equilibrium value. This is found experimentally and in
models [4–12]. A tap usually consists of a vibration applied to the system characterized
by an energy E = A2!2 where A and !=2� are the amplitude and the frequency of
the applied vibration, respectively. E can be related to an e�ective temperature. In
experiments usually the quantity � = A!2

g , is implied to parametrize the intensity of
the applied vibration, where g is the gravitational acceleration. After many taps, the
system will reach a stationary state characterized by a density �eq which, for a �xed
frequency, will depend on E (or �).
More generally, we consider the case in which the system is subjected to vibrations

applied in a suitable way, and it reaches, after a long time t, an equilibrium density
�eq. The question that we address is how does the system relax to its stationary state as
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function of �eq. To answer this question we will adapt the cooperative length approach
to the glass transition of Adam–Gibbs to granular materials. Free-volume theories and
cooperative rearrangement theories are well known from the 1960s where they were
proposed as phenomenological approaches to the relaxation behavior of glass-forming
liquids (see for instance [18–20]). In the case of granular matter the complex entan-
glement of the grains, induces very strong correlations into the system: one cannot
rearrange single elements of the system without rearranging at the same time an entire
region. The cooperative length approach provides us with a quanti�cation of how much
important are these cooperative e�ects.
Consider a d-dimensional granular system, whose volume is Ld. Imagine to divide

the system in cooperative regions of volume �d which are de�ned as the smallest
regions that can be rearranged in a new con�guration without the need of rearranging
the particles outside their boundaries. These regions are then de�ned in such a way
that the number of allowed con�gurations increases at most in a sub-exponential way
with their size �. The probability of a rearrangement inside such a cell or, what is
the same, the rate for an e�ective con�gurational change (measured in units of the
corresponding quantity for a non-frustrated system) can be easily written as

�−1 ∼ nf
nu
; (1)

where nf and nu are the number of con�gurations in which can be found the frustrated
and the non-frustrated �-cell, respectively. nf and nu are thus measures of the phase
space volume of the systems of linear dimension � (frustrated and non-frustrated). By
indicating with �f and �u the con�gurational entropies per particle relative to nf and
nu; 1

�f=u =
1
�d
log nf=u ; (2)

we de�ne with Sf and Su the analogous quantities for the whole systems (of volume
Ld). Using the property of the entropy per particle to be an intensive quantity we have
�f = Sf and �u = Su. From (1) and (2) it follows:

�−1 ' e�d(Sf−Su) : (3)

Usually, the number of con�gurations increases exponentially with the volume, how-
ever, in above de�ned the cooperative regions, where only global rearrangements are
allowed due to the entanglement of the grains, nf increases in a sub-exponential way
with � giving then �−d ∼ Sf. For large values of the density, � can grow and can
even diverge at some value �∗, which implies that Sf → 0 for �→ �∗. Assuming that
Sf vanishes linearly as Sf ∼ �∗ − �, from Eq. (3) then the relaxation time diverges
according to the law

� ∼ ec�=(�∗−�) ; (4)

1 We suppose that the �-cells are large enough to allow a statistics and in particular to allow for the de�nition
of the con�gurational entropy.
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where c is a constant. This is the Vogel–Tamman–Fulcher behavior, predicted by Adam
and Gibbs for glass-forming liquids [18], which describes the characteristic dependence
of relaxational time scales on density (or temperature) in real experiments [21,22].
In a granular medium when the density becomes high enough the cooperative regions

extend up to the dimension of the system (eventually in�nite) and a local rearrangement
of particles can only occurs through a global rearrangement of a large cooperative
region. Eqs. (3) and (4) tell us then that when the density increases cooperative regions
extend, the corresponding characteristic time for a con�gurational change increasing
exponentially. In granular materials an exponentially diverging relaxation time could
be checked experimentally, signalling the presence of a glass transition. We shall go
back to this point later on.
Our picture can provide a mechanism for a better understanding of the

Reynolds-dilatancy transition. It is well known that granular materials at high den-
sities undergo a transition in density at �c. For densities higher than �c, the material
must dilate (i.e. expand) if it is deformed. This transition has never been studied se-
riously from the theoretical point of view. Our cooperative length seems to be a good
measure for a correlation length of that transition, since it describes the size of a frus-
trated blocked cluster. The divergence of this length, accompanied by the divergence of
the viscosity, should describe the approach to this transition. If the density is increased
even further, this length is in�nite which means that there exists a spanning immobile
cluster which can only be destroyed if the system dilates. In our picture the regime of
high density would correspond to the glassy state and we expect therefore that �∗=�c.
Our picture points out the importance of local dynamical heterogeneity. Beyond

the simple picture of extended shear planes as macroscopically observed in deformed
packings for �¿�c, one would expect for �¡�c a multitude of dilated regions of the
characteristic size of the cooperative length and it would be interesting to experimen-
tally verify the presence of these dynamical heterogeneities as also found in glasses
[23].
The existence of a relaxation time with the general functional form (4), with �∗ =

�max, can be seen as the outcome of a free-volume theory for granular media. Although
the Adam–Gibbs approach is in principle more general the two phenomenological ap-
proaches reproduce the same qualitative results. Following Boutreux and De Gennes
reasoning [11] one can de�ne the free volume as the excess of volume per particle
which can be redistributed in the system at a certain density. In a box of total vol-
ume V a set of N monodisperse particles each one of volume w occupies a volume
Vocc=Nw. If Nmax is the maximal number of particles the box can contain, the maximal
volume Vmax=Nmaxw, then the free-volume per particle, at each given volume fraction,
�= Nw=V , is

vfree =
Vmax − Vocc

N
= w

�max − �
�

: (5)

If one postulates [11] an exponential distribution, f(v), of empty volumes into the
system, vfree will represent the average empty volume in f(v) = (1=vfree)e−v=vfree . Each
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particle will be able to make a move provided that it �nds an empty volume greater
or equal to its own volume. The distribution of voids larger than w is

P(v¿w) =
∫ ∞

w
f(v) dv= e−w=Vfree = e−�=(�max−�): (6)

This behavior can lead to exponentially long relaxation times as the free-volume tends
to vanish [24,25,8,9]. It is worth to stress how free-volume theories are, in principal,
less general than the theory based on the existence of cooperative regions. Free-volume
theories just take into account geometrical e�ects whereas a cooperative length ap-
proach, being very general, can take into account, in principle, any factors inducing a
frustration in the system, e.g. energetic barriers.
Let us now push forward our approach �a la Adam–Gibbs. In order to get more

detailed informations on the relaxation process in the system, we consider its general
master equation for the density �(x; t) at any spatial point x at time t which can be
written

@t�(x; t) =−
∑
x′
W (x; x′)�(x; t) +

∑
x′
W (x′; x)�(x; t) ; (7)

where W (x; x′) is the transition probability per unit time from x to x′. We assume that
the density at site x is out of equilibrium and is surrounded by a reservoir which is
at equilibrium with a density �= �eq. Notice that �eq6�∗6�max. In this case Eq. (7)
reads

@t�(t) =− �(t)
�(�eq)

+
�eq

�(�(t))
; (8)

where we have de�ned �−1(�eq) =
∑

x′ W (x; x
′) and �−1(�(t)) =

∑
x′ W (x

′; x) taking
into account that the characteristic time � only depends on the density at that point.
In order to include the cooperative e�ects of the entire system the characteristic time
is chosen, in the region where � is close to �∗, with the same form predicted by the
Adam–Gibbs theory, i.e. �(�) = exp[�=(�∗ − �)], where, for sake of simplicity, we
choose c= 1 and the prefactor equal to unity. Remember that �∗ is the density where
the relaxation time diverges, �∗ = �max being a particular case.
In the region where � is close to �eq, ��=(�eq−�(t))=�eq.1, one can identify two

typical regimes for the density relaxation. For ��¿ (�∗−�eq)2=�2eq the second term in
Eq. (8) dominates the dynamics and gives rise to a logarithmic behavior (similar to
that of Refs. [5–10]):

�(t)− �∗
�∗ − �(0) =− 1

1 + B ln(t=�0 + 1)
; (9)

where B and �0 are dependent on �∗ and �eq. Very close to the equilibrium density, i.e.
when ��.(�∗ − �eq)2=�2eq, one can linearize the equation and an exponential regime
takes place with a characteristic time of the order of �(�eq) = exp(�eq=(�∗ − �eq)). Let
us notice how as �eq approaches �∗, by changing, for instance, the vibration intensity,
the relaxation time diverges, suggesting the existence of a glass transition at � = �∗.
The relaxation time scale given by �rel = �(�eq) gives the crossover, in the density
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relaxation, from a non-trivial dynamical behavior at short times to a long time simply
exponential decay.
Let us notice how this treatment shares some similarities with other proposed ap-

proaches [8,9,11]. In particular, Boutreux and De Gennes [11] considered an equation
with just the second term in the right-hand side of Eq. (8) with �eq = �∗. Nowak et
al. [7–9] considered an absorption–desorption equation for a plane exchanging particle
with a reservoir such that it can receive particle with a characteristic time independent
of its density. In our approach we stress how the equilibrium density �eq could be
di�erent from �∗, the density where the relaxation time diverges. That allows for an
exponential regime after the logarithmic one. Furthermore, we consider the interaction
with a real environment which is not perturbed by the arrival of particles but which
poses problems to their packing via the term �(�eq) dependent on �eq. This is the
simplest way to introduce the cooperative e�ect given by the interaction with other
parts of the system.
The general features in the above approach can be relevant to other systems where

the relaxation time follows the Vogel–Fulcher behavior. For instance, in glass forming
liquids we may expect, near the ideal glass transition and in the long-time regime, a
logarithmic behavior eventually followed by an exponential tail.
Our theoretical analogies between glasses and granular systems do of course have

their limitations. While the individual constituents of a glass are made of molecules,
granular systems are made of particles with mass of many orders of magnitude larger
than that of molecules, therefore there is an important di�erence concerning the concept
of temperature. Moreover typically a granular packing is shaken, giving to the internal
movements a periodic time dependence, eventually an anisotropic direction and often
also shock-like waves. In a glass, temperature is a scalar, the motions are isotropic and
random in time. Therefore in order to mimic our concept of temperature in a granular
experiment, one would have to put vibrators at many locations, several frequencies and
several directions. In fact, it is known that granular packings can have internal texture as
described by the fabric tensor primarily due to the direction of the applied excitations.
Considering all this, in the ideal case, the proposed experiments should be made to
measure the relaxation time and check the proposed Vogel–Fulcher law. For instance
one can consider a system lying on the reversible curve (�; �eq), i.e. in the curve where
at each given vibration energy corresponds a speci�c equilibrium density �eq [8,9].
Starting at the density corresponding to the highest �, one can reduce progressively
� and measure the characteristic time to reach the new equilibrium density �eq(�),
�(�eq). According to our approach one would expect for this characteristic time a form
given by Eq. (4). When �eq gets closer and closer to �∗ the characteristic time starts
to diverge signaling the existence of a glass-like transition at �∗.
It is worth to stress, as a speci�c example of a system which is supposed to possess

all the properties of the systems we mentioned up to now, the case of the so-called
“Tetris” model [10,26] that exhibits a very slow relaxation dynamics due to high en-
tropic barriers (originated by geometrical constraints) which have to be passed by the
particles to improve the global packing. In this case one observes how the introduction
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of frustration induces a dramatic e�ect on the entropy which vanishes as the density
� → 1. We do not present the long expression for SF(�) but it is worth to note that
near �= 1 one has SF(�)|�→1 ' (1− �)log(1− �). Let us notice how this represents
an explicit example of a system for which it holds the hypothesis that SF(�)→ 0 for
�→ �∗ with �∗ = �max = 1.
Furthermore one can calculate �, the size of the cooperative regions, for this partic-

ular system. If � is the coverage density, one has � ' �=(1− �) and again we �nd a
cooperative length which diverges (at �∗ = 1) and which brings, once inserted in (3),
to a diverging characteristic time � ∼ e�=(1−�). This expression has been checked by
direct simulations on the Tetris-like system [26].
In summary in this paper we have proposed a simple phenomenological approach

to explain the slow relaxation behaviors observed in granular media. It turns out that
a crucial role for these systems is played by the so-called free volume that gives a
measure of the extension of the cooperative regions into the system. It is the geo-
metrical frustration felt by the grains that induces at its turn drastic modi�cations of
the allowable phase space, i.e. of the con�gurational entropy, which corresponds to
the existence of the cited cooperative regions. We have then related quantitatively the
relaxation dynamical properties of these systems to quasistatic and geometrical prop-
erties. These concepts turn out to be relevant in many phenomena involving granular
matter. We just mention the compaction under vibration, which exhibits a very slow
inverse logarithmic behavior as a consequence of the high entropic barriers the system
has to overcome to reach the close-packing density con�guration, and the interesting
phenomena related to the segregation of species in a medium subjected to shaking.
We have proposed a set of possible experiments to check the predicted Vogel–Fulcher
law for the behavior of the characteristic relaxation time. Finally, we have suggested
how a similar approach could be relevant to describe the long-time behavior in glass
forming liquids.
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