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Shock propagation in a granular chain

Erwan Hascoe¨t,1 Hans J. Herrmann,1,2 and Vittorio Loreto1
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We numerically solve the propagation of a shock wave in a chain of elastic beads with no restoring forces
under traction~no-tension elasticity!. We find a sequence of peaks of decreasing amplitude and velocity.
Analyzing the main peak at different times we confirm a recently proposed scaling law for its decay.
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I. INTRODUCTION

The study of granular matter is of interest for fundamen
physics as well as for technological applications. The int
sive studies of liquids and solids gave physicists powe
tools for investigating these states of matter. These tools
however, very difficult to apply to granular matter@1#.

Little work has been done on sound propagation in r
granular media. Experiments have been performed by
and Nagel@2–4# who investigated the propagation of lo
amplitude vibrations in a box of spherical beads. It was c
cluded that nonlinearity and disorder make wave propaga
behave in very unexpected ways: the fragile structure of c
tacts between grains makes them sensitive to rearrangem
dramatically changing the amplitude response of the rece
to the source. Besides, disorder gives rise to important in
ference effects that can lead to localization@5#. Numerical
simulations have been made by Melin@6#, who studied the
depth dependence of sound speed in granular media.
results obtained were different from the power law behav
between sound speed and pressure predicted by Goddar@7#
in an effective medium calculation.

Three-dimensional models seem to be very difficult
investigate directly and we need to begin with simplifi
models in order to isolate specific features of real granu
media. In this paper we try to understand the effect of n
linearity on wave propagation in one dimension. A previo
study was done by Nesterenko@8# on a chain of spherica
beads obeying the elastic Hertz law of contact. It was sho
both analytically and numerically that the chain submitted
compression pulses involves solitary wave propagation. T
has been confirmed by the experiments of Lazaridi and N
terenko@9# and of Coste, Falcon, and Fauve@10#.

Here, we want to study the case of a chain of beads
tially in contact and submitted to a shock perturbation. T
beads interact via an elastic contact law only when they
compressed. The problem is therefore highly nonlinear
cause as soon as there are broken contacts the chain be
as an ensemble of independent elastic systems. We can
at this problem even in terms of a linear chain of poin
connected by springs with completely asymmetric ela
PRE 591063-651X/99/59~3!/3202~5!/$15.00
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constants:k in compression and zero in extension. Here
must emphasize that the Hertz law which has been stu
until now corresponds to perfect spherical beads. In a
granular medium the shape of the beads at contacts ca
far from spherical. In fact bead interactions can be mode
with a force law exponent varying from 1 to 2. Our line
compression force model belongs to this range. This o
dimensional system is clearly far from being realistic but
exhibits some features which can aid understanding of
more general problem. In particular, we try to elucidate h
the front wave propagates and how its lost energy can c
tribute to the formation of several other secondary wav
The outline of the paper is as follows. In Sec. II we defi
our model and we present the setup for the numerical si
lations. Section III is devoted to the description of the resu
concerning the phenomenology of the system. In Sec. IV
discuss in detail the mechanism of front formation. Discu
sions and conclusion will be given in Sec. V.

II. MODEL DEFINITION

Our model is composed ofN spherical beads of radiusR
and massm. We define the force between two neighborin
beads as varying linearly under compression and being e
to zero when the beads are not in contact. It can be writte

F5kdu~d!, ~1!

wherek is the spring constant, 2R2d the distance between
the centers of the two neighboring beads, andu the Heavi-
side function. Mechanically such systems are known as ‘‘
tension elastic’’@12#. Initially all the beads are just touchin
each other without exerting any forces on each other exc
for the first bead which penetrates the second one byd0 . We
then let the system evolve with the left end fixed and
right end free. An experimental realization of the model c
easily be done, as can be seen from Fig. 1. This o
dimensional array of nonconnected linear springs is the s
plest model for no-tension elasticity. The equations of m
tion are the following:
FIG. 1. Simple experimental realization of the model.
3202 ©1999 The American Physical Society
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müi5kd i 21,iu~d i 21,i !2kd i ,i 11u~d i ,i 11!, 0, i ,N21
~2!

whereui is the displacement of bead numberi. One can write

d i 21,i52R2~xi2xi 21! ~3!

52R2@ui1xi ,02~ui 211xi 21,0!# ~4!

5ui 212ui , ~5!

where xi is the position of bead numberi and xi ,05(2i
11)R. Thus,

müi5k~ui 212ui !u~ui 212ui !

2k~ui2ui 11!u~ui2ui 11!,

0, i ,N21 ~6!

with the boundary conditions given by

u05d0 for t>0,

ui50 for i .0 and t50. ~7!

These boundary conditions correspond to the study of
propagation of a shock in the chain. From now on we w
denote with forward and backward direction the direction
increasing and decreasingi, respectively. For the numerica
implementation of the analysis we have chosenN51500,
R55 mm,r51.93103 kg m23, k5107 N m21, and d0
50.5 mm. Several algorithms have been used to solve
system of equations~6!. First, we implemented the Verle
scheme which was not able to give good enough precis
Much better accuracy was obtained with a fifth order G
predictor-corrector method being even more precise than
fourth order Runge-Kutta scheme. The test of the accur
was obtained by monitoring the energy conservation of
system. During the computation, energy conservation
satisfied with a relative error lower than 1026 with a time
stepDt51028 s. It is worth stressing that during the tot
time of evolution the perturbation never reaches the end
the chain.

III. FRONT PHENOMENOLOGY AND COMPARISON
WITH THE HARMONIC CASE

In order to follow the evolution of the perturbation w
have monitored the evolution of the displacementsui and of
the velocitiesv i of the beads versus the bead numberi as a
function of time. A snapshot of the solutions at a given tim
is shown in Fig. 2 and Fig. 3. The bead displacements
characterized by a front wave followed by inclined platea
The plateaus consist of an almost smooth curve with jum
It is worth noting how, in the plot of the displacemen
intervals with positive slopes typically correspond to regio
of detached particles while the negative slopes correspon
particles in contact with each other. The snapshot for
velocities exhibits a structure of peaks with decreasing a
plitude. These peaks correspond to waves propagating
monotonically decreasing velocities. Each wave is, at
turn, composed by several particles which are all in con
e
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with each other and moving in the same forward direction
between the peaks particles are not in contact and propa
in the backward direction with decreasing velocities. In F
3 we also see the appearance of noise. This is a real num
cal noise which is reduced but never disappears when
decrease the time step resolution. In fact, decreasing
resolution by one order of magnitude allows us to obse
another peak and so on and so forth. In the ideal case
infinite resolution one would be able to observe an infin
series of peaks behind the front. As we shall see later,
fact has no consequences on our conclusions since we
discuss the region where no noise occurs and results ca
extrapolated to the noisy region. Coming back to the analy
of Fig. 3 we can say that periodically the front loses ene
when its last particle is detached, i.e., loses contact. Thi
the only way in which the energy stored in the front wa
can decrease. In this way behind the front one has a cha
particles moving backward with decreasing velocity. The
particles can eventually contribute to the formation of pea
whose nature is different from that of the front. We w
come back to this point later when we will discuss the act
mechanism for the front formation.

It can be easily shown that the front wave propaga
nearly at the sound velocity. In order to do that we calcul
analytically the speed of sound in a medium of the sa
density as our beads and we compare the results with

FIG. 2. Displacements of the beads at propagation times e
to 631023 s,1022 s, and 1.431022 s.

FIG. 3. Velocities of the beads after 1.431022 s.
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speed observed numerically for several values of the ela
constantk: 108 N m21,107 N m21, and 106 N m21.

The calculation of the speed of sound is made as follo
if we consider the beads as springs of spring constantk and
length 2R we get a dispersion relation that is

v52Ak

m
usinqRu, ~8!

whereq is the wave vector. The speed of sound being
fined bycs5 limq→0v/q, we get

cs52RAk

m
. ~9!

Replacing all the parameters with their numerical valu
we have cs53170.47 m s21 when k5108 N m21, cs
51002.59 m s21 when k5107 N m21, and cs
5317.05 m s21 whenk5106 N m21. These speeds are sy
tematically slightly greater than the ones computed num
cally which gave us 3160 m s21,1000 m s21, and
316 m s21, respectively. These numerical values have b
obtained by counting the number of beads separating
positions of the maxima of velocity in the front at two di
ferent times. We cannot thus pretend an exact agreem
with theoretical values.

In order to have a better understanding of our results
compare our system with the harmonic chain consisting
series of springs with spring constantk. We integrated the
harmonic chain keeping the same initial conditions. Af
some algebra we get the chain eigenfrequencies:

v l
254

k

m
cos2

lp

2N21
, 1< l<N21. ~10!

We then obtain for the displacements:

un~ t !5d01~21!n (
l 51

N21

Cl sin~2nlp/2N21!cosv l t,

1<n<N21

u0~ t !5d0 , ~11!

where theCl are constants depending on the initial con
tion.

This relation is shown in Fig. 4 where we recognize t
well-known oscillations after the front due to the discretiz
tion as already discussed by Gibbs and being now what
call the ‘‘Gibbs phenomenon.’’ We also plotted in Fig.
what happens when one tries to go continuously from
harmonic case to the no-tension case by decreasing
spring constant of the springs when they are under trac
and keeping them equal tok under compression. Each curv
corresponds to a different value of the ratio of the spr
constant under traction overk. We clearly observe a continu
ous transition from the harmonic regime to the no-tens
one as we decrease the ratio of the spring constants.
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IV. WAVE FORMATION

In the preceding section we have made some observat
about the displacement and velocity profiles for a fixed ti
of propagation. Let us now consider the time evolution
order to understand how the peaks are created and how
propagate.

A. Scaling of the front shape

We define the amplitude of the front wave as the ma
mum velocity of the beads belonging to it. The curve rep
senting this amplitude as a function of time is shown in F
5. One can see that the amplitude decreases and oscil
These oscillations are due to the discretization, i.e., to
fact that the bead having the maximum velocity keeps
during a finite time corresponding in Fig. 5 to the width
the oscillation. Initially the fastest bead has a low veloc
that increases towards a maximum with time. Then this va
decreases to a value lower than the initial value. This beh
ior continues with the right neighbor of the previous be
which then has the new maximum speed and keeps it du

FIG. 4. Curves of displacements for different values for the ra
of the elasticity constants. The ratio goes from one~harmonic
chain! to zero~nonlinear chain!. The propagation time is 1022 s.

FIG. 5. Double-logarithmic plot of the amplitude of the fron
wave versus time. After a fast increase it decreases and oscill
The dashed line corresponds to the functionf (x)}x2a which fits
the envelope of the maxima of the amplitude curve.
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a finite time with the same evolution as before. On a log-
scale we find that the envelope of the maxima is well fit
by a power lawA(t)}t2a with a.0.17, consistent with a
t21/6 behavior. This value of the exponent seems to be u
versal since it is robust when changing the value of the e
ticity constantk in the range 106–108 and d0 in the range
0.3–0.7 mm.

We also define the width of the front wave by counti
the number of beads with velocities greater than zero belo
ing to the front. For this quantity we find a scaling la
L(t)}tb with b.0.32 ~see Fig. 6!. In this case the behavio
is consistent witht1/3 and is very robust with the same un
versal character as for the scaling ofA(t). The exponentsa
andb agree with the calculation made by Hinch@11# using
the conservation of kinetic energy of the front wave (a8
5 1

6 ,b85 1
3 ).

The use of the two previous power laws enables us to
a scaling relation for the front. By plottingv i(t)/t

2a versus
(xi2v f t)/t

b8 wherev f is an adjustable parameter with th
dimension of a speed, we found that the curves correspo
ing to different values oft collapse on a single one as show
in Fig. 7. The collapse happens for a value ofv f
51001.5 m s21 which is very close to the sound spee
1002.5 m s21 (k5107 N m21). It is worth noting thatv f is
the speed measured at the center of mass of the front an
at its maximum. The best collapse is obtained for the val
of a50.17 andb85 1

3 . The exponentb changed tob8 in
agreement with the theoretical results whereasa is not ex-
actly equal toa8 since its calculation is based on kinet
energy conservation. In the present case energy is dissip
from the front wave by the effect of detachment of partic
which induce a correction toa8. We can therefore write the
following scaling law for the elastic front:

v i~ t !

t2a
5 f S xi2v f t

tb8 D , ~12!

where f is a scaling function that has also been calcula
@11# andv f51001.5 m s21.

This scaling relation allows us to describe the se
similarity of the front wave shape. Another interesting fe
ture coming from the scaling relation is that the velocity

FIG. 6. Double-logarithmic plot of the width of the front wav
versus time. The dashed line corresponds to the functionf (x)}xb

showing an increase of the width with a power law.
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the front is defined at the center of mass of the beads belo
ing to it. The other points on the front shape move w
different velocities. Each point behind the center of ma
moves with a velocity smaller than the sound speed whe
the points on the part preceding the center move with a la
velocity. Thus the front wave is divided into a subsonic a
a supersonic part. This kind of wave is very different fro
the solitonic ones discovered by Nesterenko@8#, who found
that the wave travels with a constant shape and a cons
speed for all its points.

B. Emergence of the secondary peaks

Let us now focus our attention on the secondary pe
propagating behind the elastic front. The particles detac
from the front move backwards and their energy does
same ~the system is globally conservative!. This energy
propagating backwards is then transferred from particle
particle until it reaches the left boundary where it is reflec
and starts to propagate forward. This is the beginning of
propagation of a peak. The process then continues by m
of detachments of particles from this peak, contributing
this way to the formation of new peaks.

In order to analyze in detail the evolution of the peaks
looked at the spatiotemporal structure of the contacts of
first 100 beads of the chain. This can be seen in Fig. 8: a g
dot means that there is a contact between two beads whe
a white dot means that they are not in contact. The com
tation of the contact distribution of the beads is done ev
1025 s up to a propagation time of 2.531023 s. At 1025 s
almost all the beads are under compression. Then this c
pression chain moves to the right, leaving empty spaces
tween the first beads of the chain. This corresponds to
formation of the front wave. As the compression chain tra
els ~the large gray triangle in the right lower corner of th
plot! one can observe gray dots appearing at the beginnin
the chain. This means that a new compression wave is b
created. This wave is much thinner than the front wave a
is represented on the plot by an almost straight curve wit
slope slightly above the slope of the front, showing that t

FIG. 7. Collapse of the front wave shape to a single curve v
fying the scaling law for the bead velocities in the front wave. W
show four curves corresponding tot50.331022 s, 0.631022 s,
0.931022 s, 1.231022 s.a50.17, b85

1
3 , and v f

51001.5 m s21.
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first peak travels slower than the front. It can be seen that
other peaks are also formed at the begining of the chain
making an almost straight gray line with a slowly increasi
slope, which means a decreasing speed. It is easy to un
stand that the existence of these peaks is due to reflection
the first bead, which remains fixed, playing the role of
reflecting wall. Hence without noise there should be m
than five peaks in Fig. 3: all the peaks behind these five h
been destroyed by a numerical noise and one should s
succession of peaks with decreasing amplitude until the
ginning of the chain. One more important point emergi

FIG. 8. Spatiotemporal evolution of bead contacts. The first 1
contact points of the chain are on the horizontal axis and time is
the vertical axis. The distribution of contacts is computed ev
1025 s. Here we started at 1025 s till 2.531023 s. A white square
means that there is no contact between two beads whereas a
one means that the beads are in contact.
od
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from the spatiotemporal pattern is that beads which do
belong to a peak are not under compression and are thus
ballistic regime, as one can see from the white spaces s
rating the peaks in Fig. 8.

V. CONCLUSION

We have studied the response of a chain of beads
small displacement when no static force is applied to
ends. We observe a propagation of waves that is very dif
ent from the solitons which can be seen in a Hertzian ch

The nonlinearity of the problem lies in the contact la
used: a step function which indicates that there is no fo
when two beads are not in contact.

By keeping the left end of the chain fixed we observed
interesting bouncing phenomenon. In addition to the ela
front, secondary peaks of decreasing amplitude are gener
at the left end of the chain. These peaks correspond to
eral beads in compression traveling in the forward direct
whereas the beads in between the peaks travel in the b
ward direction without touching each other. We have fou
an interesting scaling law for the velocity of the beads b
longing to the elastic front. This law, which has also be
derived analytically by Hinch@11#, seems to be universa
since it does not depend on the parameters of the proble

Starting from these results it would be interesting to lo
at a chain submitted to other types of perturbations. Besi
it is important to look at different networks~two or three
dimensional! in order to understand the effect of the netwo
structure on wave propagation.

ACKNOWLEDGMENTS

We recently became aware that Hinch@11# studied a very
similar problem, getting very similar results. We thank h
for having shown us his analytical results. We are also gra
ful to S. Roux for many interesting discussions. V.L. h
been supported by Contract No. CEE ERBFMBICT 9612

0
n
y

ray
z.

@1# H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. M

Phys.68, 1259~1996!.
@2# C. Liu, Phys. Rev. B50, 782 ~1994!.
@3# C. Liu and S. R. Nagel, Phys. Rev. Lett.68, 2301~1992!.
@4# C. Liu and S. R. Nagel, Phys. Rev. B48, 15 646~1993!.
@5# S. Feng and D. Sornette, Phys. Lett. A184, 127 ~1993!.
@6# S. Melin, Phys. Rev. E49, 2353~1994!.
@7# J. D. Goddard, Proc. R. Soc. London, Ser. A430, 105 ~1990!.
@8# V. F. Nesterenko, Prikl. Mekh. Tekh. Fiz.5, 136 ~1983! @J.
. Appl. Mech. Tech. Phys.24, 567 ~1983!#.
@9# A. N. Lazaridi and V. F. Nesterenko, Prikl. Mekh. Tekh. Fi

3, 115 ~1985! @J. Appl. Mech. Tech. Phys.26, 405 ~1985!#.
@10# C. Coste, E. Falcon, and S. Fauve, Phys. Rev. E56, 6104

~1997!.
@11# J. Hinch~unpublished!.
@12# M. K. Alves and B. K. Alves, Eur. J. Mech. A/Solids16, 103

~1997!.


