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Shock propagation in a granular chain
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We numerically solve the propagation of a shock wave in a chain of elastic beads with no restoring forces
under traction(no-tension elasticily We find a sequence of peaks of decreasing amplitude and velocity.
Analyzing the main peak at different times we confirm a recently proposed scaling law for its decay.
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[. INTRODUCTION constantsk in compression and zero in extension. Here we
The study of granular matter is of interest for fundamentalmufSt emphasize that the Hertz law Wh'.Ch has been studied
physics as well as for technological applications. The intenlJntII now Corr_esponds to perfect spherical beads. In a real
sive studies of liquids and solids gave physicis.ts powerfu ranular medu_;m the shape of @he bea_ds at contacts can be
tools for investigating these states of matter. These tools ar ar from spherical. In fact bead interactions can be mpdeled

: Sith a force law exponent varying from 1 to 2. Our linear

however, very difficult to apply to granular matfel. Fompression force model belongs to this range. This one-

ral_r:tlj:grwrgg;ligasEgezﬂn?:r?ti %gvseoir;irfrogggﬁﬁzg 'S r?_?glmensional system is clearly far from being realistic but it
gnd Na el[2—4j Whg investioated the ropa ation of E(/)W exhibits some features which can aid understanding of the
Nagel]. . i 9 > propag more general problem. In particular, we try to elucidate how
amplitude vibrations in a box of spherical beads. It was con;

cluded that nonlinearity and disorder make wave propai atiothe front wave propagates and how its lost energy can con-
y Propagaliofy, ie 1o the formation of several other secondary waves.

behave in very ungxpected ways: the fr.a.gile structure of co The outline of the paper is as follows. In Sec. Il we define
tacts between grains makes them sensitive to rearrangemen Rir model and we present the setup fbr the nﬁmerical Simu-

dramatically changing the amplitude response of the recept(fzrzltions. Section Il is devoted to the description of the results

to the source. Besides, disorder gives rise to important inter- .
ference effects that can lead to localizatidj. Numerical concerning the phenomenology of the system. In Sec. IV we

” . . discuss in detail the mechanism of front formation. Discus-
simulations have been made by Me[@], who studied t.he sions and conclusion will be given in Sec. V.
depth dependence of sound speed in granular media. The
results obtained were different from the power law behavior

between sound speed and pressure predicted by Gofidard [l. MODEL DEFINITION

in an effective medium calculation. o del i d o1 spherical beads of raditR
Three-dimensional models seem to be very difficult to d ur mo ev\;s EOIPPOS{E ¢ Sp E”t(\:: e? S0 rah:) .
investigate directly and we need to begin with simplified"’m massn. Ve detine the force between two neignboring
Feads as varying linearly under compression and being equal

models in order to isolate specific features of real granula . b
media. In this paper we try to understand the effect of non° 27 when the beads are not in contact. It can be written as

linearity on wave propagation in one dimension. A previous
study was done by Nesterenk8] on a chain of spherical F=k60(9), @
beads obeying the elastic Hertz law of contact. It was shown
both analytically and numerically that the chain submitted towherek is the spring constant,R— 6 the distance between
compression pulses involves solitary wave propagation. Thithe centers of the two neighboring beads, #nthe Heavi-
has been confirmed by the experiments of Lazaridi and Nesside function. Mechanically such systems are known as “no-
terenko[9] and of Coste, Falcon, and FaulMg)]. tension elastic’T12]. Initially all the beads are just touching
Here, we want to study the case of a chain of beads inieach other without exerting any forces on each other except
tially in contact and submitted to a shock perturbation. Thefor the first bead which penetrates the second onéghywe
beads interact via an elastic contact law only when they aréhen let the system evolve with the left end fixed and the
compressed. The problem is therefore highly nonlinear beright end free. An experimental realization of the model can
cause as soon as there are broken contacts the chain behaeasily be done, as can be seen from Fig. 1. This one-
as an ensemble of independent elastic systems. We can lodknensional array of nonconnected linear springs is the sim-
at this problem even in terms of a linear chain of pointsplest model for no-tension elasticity. The equations of mo-
connected by springs with completely asymmetric elastidion are the following:

FIG. 1. Simple experimental realization of the model.
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whereu; is the displacement of bead numbe®ne can write ul
8i-1;=2R— (X —Xi-1) ® F o1y
S 10}
=2R—[Ui+X; o= (Uj-1+Xj-1,0)] (4) g ogl
6§
=Uji-1— U, )
4 -
where x; is the position of bead numberand x; o= (2i 2|
+1)R. Thus, 0 . . i . ; . .
) 0 200 400 600 800 1000 1200 1400 1600
mu=k(Uj—1—Uu;) O(u;—1— ;) i
—k(uj— Ui+ 1) O(Uj— Ui 4 1), FIG. 2. Displacements of the beads at propagation times equal

_ to 6x10 ®s,10%s, and 1.410 2 s.

0<i<N-1 (6)

with each other and moving in the same forward direction. In

between the peaks particles are not in contact and propagate

in the backward direction with decreasing velocities. In Fig.

3 we also see the appearance of noise. This is a real humeri-

u=0 for i>0 andt=0. 7) cal noise Whlch is reduced but.never disappears When we
decrease the time step resolution. In fact, decreasing the

These boundary conditions correspond to the study of thEeSolution by one order of magnitude allows us to observe
propagation of a shock in the chain. From now on we will@nother peak and so on and so forth. In the ideal case of
denote with forward and backward direction the direction ofinfinite resolution one would be able to observe an infinite
increasing and decreasigrespectively. For the numerical S€ries of peaks behind the front. As we shall see later, this
implementation of the analysis we have chodér 1500 fact has no consequences on our conclusions since we will
R=5 mm,p=1.9x1C kgm 3, k=10 Nm%, and &, discuss the region where no noise occurs and results can be
—0.5 mm. Several algorithms have been used to solve thextrapolated to the noisy region. Coming back to the analysis
system of equationés). First, we implemented the Verlet of Fig. 3 we can say that periodically the front loses energy

scheme which was not able to give good enough precisior\’."hen its last particle is detached, i.e., loses contact. This is
Much better accuracy was obtained with a fifth order GeafN® only way in which the energy stored in the front wave
predictor-corrector method being even more precise than the&n decrease. In this way behind the front one has a chain of
fourth order Runge-Kutta scheme. The test of the accurach@rticles moving backward with decreasing velocity. These
was obtained by monitoring the energy conservation of thdarticles can e\_/ent_ually contribute to the formation of per_slks
system. During the computation, energy conservation wawhose nature is dlff_erent from that of _the' front. We will
satisfied with a relative error lower than 10with a time  cOme back to this point later when we will discuss the actual
stepAt=10"% s. It is worth stressing that during the total Mechanism for the front formation.

time of evolution the perturbation never reaches the end of !t can be easily shown that the front wave propagates
the chain. nearly at the sound velocity. In order to do that we calculate

analytically the speed of sound in a medium of the same
density as our beads and we compare the results with the

with the boundary conditions given by

Up=34, for t=0,

[ll. FRONT PHENOMENOLOGY AND COMPARISON

WITH THE HARMONIC CASE 2

In order to follow the evolution of the perturbation we
have monitored the evolution of the displacemantand of
the velocitiesv; of the beads versus the bead numbes a
function of time. A snapshot of the solutions at a given time
is shown in Fig. 2 and Fig. 3. The bead displacements are¥ ¢ |
characterized by a front wave followed by inclined plateaus. =
The plateaus consist of an almost smooth curve with jumps. 4t
It is worth noting how, in the plot of the displacements,
intervals with positive slopes typically correspond to regions
of detached patrticles while the negative slopes correspond to 0 Wf;wu Sk HIM
particles in contact with each other. The snapshot for the
velocities exhibits a structure of peaks with decreasing am- - - - - : : :
plitude. These peaks correspond to waves propagating with 0 200 400 600 800 1000 1200 1400 1600
monotonically decreasing velocities. Each wave is, at its '
turn, composed by several particles which are all in contact FIG. 3. Velocities of the beads after X402 s.
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speed observed numerically for several values of the elastic 18 - - - . - - -
constant: 108 Nm™1,10' Nm™%, and 16 Nm™2. 6L
The calculation of the speed of sound is made as follows:
if we consider the beads as springs of spring condtantd
length 2R we get a dispersion relation that is 12

10 I

whereq is the wave vector. The speed of sound being de-
fined bycs=limy_ ,0/q, we get

K 0 200 400 600 800 1000 1200 1400 1600
cs=2R\[a. (9) i

FIG. 4. Curves of displacements for different values for the ratio
;f the elasticity constants. The ratio goes from daih@rmonic
chain to zero(nonlinear chaiin The propagation time is 16 s.
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Replacing all the parameters with their numerical value
we have c,=3170.47 ms! when k=10* Nm™%, c,
=1002.59 ms! when k=10'Nm™%  and c,
=317.05 m s* whenk=10° N m~ . These speeds are sys-

tematically slightly greater than the ones compgted numeri- |n the preceding section we have made some observations
cally V_VENCh gave us 3160 m$,1000ms?, and  apout the displacement and velocity profiles for a fixed time
316 ms 7, respectively. These numerical values have beemf propagation. Let us now consider the time evolution in

obtained by counting the number of beads separating thgrder to understand how the peaks are created and how they
positions of the maxima of velocity in the front at two dif- propagate.

ferent times. We cannot thus pretend an exact agreement
with theoretical values. ,

In order to have a better understanding of our results we A. Scaling of the front shape
compare our system with the harmonic chain consisting in a We define the amplitude of the front wave as the maxi-
series of springs with spring constaktWe integrated the mum velocity of the beads belonging to it. The curve repre-
harmonic chain keeping the same initial conditions. Aftersenting this amplitude as a function of time is shown in Fig.

IV. WAVE FORMATION

some algebra we get the chain eigenfrequencies: 5. One can see that the amplitude decreases and oscillates.
These oscillations are due to the discretization, i.e., to the
, k |7 fact that the bead having the maximum velocity keeps it
oj :450052 on—1: IsISN-L (100 during a finite time corresponding in Fig. 5 to the width of

the oscillation. Initially the fastest bead has a low velocity
that increases towards a maximum with time. Then this value
decreases to a value lower than the initial value. This behav-
ior continues with the right neighbor of the previous bead
which then has the new maximum speed and keeps it during

We then obtain for the displacements:

N—1
Uy(t)= 8o+ (—1)" >, C,sin(2nlm/2N—1)coswt,
I=1

10°

1snsN-1
Uo(t) = o, (11

where theC, are constants depending on the initial condi-
tion.

This relation is shown in Fig. 4 where we recognize the
well-known oscillations after the front due to the discretiza-
tion as already discussed by Gibbs and being now what we
call the “Gibbs phenomenon.” We also plotted in Fig. 4
what happens when one tries to go continuously from the
harmonic case to the no-tension case by decreasing the 100102
spring constant of the springs when they are under traction
and keeping them equal tounder compression. Each curve
corresponds to a different value of the ratio of the spring FiG. 5. Double-logarithmic plot of the amplitude of the front
constant under traction ovir We clearly observe a continu- wave versus time. After a fast increase it decreases and oscillates.
ous transition from the harmonic regime to the no-tensiorrhe dashed line corresponds to the functigr)ox ¢ which fits
one as we decrease the ratio of the spring constants. the envelope of the maxima of the amplitude curve.

Vinax(t) [m/s]

10° 10* 10° 10°

t[10%5]
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FIG. 6. Double-logarithmic plot of the width of the front wave
versus time. The dashed line corresponds to the fundifamjecx?
showing an increase of the width with a power law.

FIG. 7. Collapse of the front wave shape to a single curve veri-
fying the scaling law for the bead velocities in the front wave. We
show four curves corresponding te=0.3x10 2's, 0.6x10 2 s,
9x107%s, 1.2x102s.=0.17, pB'=3  and v,

a finite time with the same evolution as before. On a Iog-log0 .
1001.5ms-.

scale we find that the envelope of the maxima is well fitted™
by a power lawA(t)et™“ with «=0.17, consistent with a ] ]
t~ 16 hehavior. This value of the exponent seems to be unithe front is defined at the center of mass of the beads belong-
versal since it is robust when changing the value of the elagDd to it. The other points on the front shape move with
ticity constantk in the range 10-1C and &, in the range different velocities. Each point behind the center of mass
0.3-0.7 mm. moves with a velocity smaller than the sound speed whereas
We also define the width of the front wave by counting the points on the part preceding the center move with a larger
the number of beads with velocities greater than zero belong/elocity. Thus the front wave is divided into a subsonic and
ing to the front. For this quantity we find a scaling law & SUPersonic part. This kind of wave is very different from

L(t)=t# with 8=0.32 (see Fig. 6. In this case the behavior the solitonic ones discoyered by Nesteref&h who found
is consistent witht’3 and is very robust with the same uni- that the wave travels with a constant shape and a constant

versal character as for the scaling/ft). The exponentsr ~ SPeed for all its points.

and 8 agree with the calculation made by Hinfhl] using

thel conslervation of kinetic energy of the front wave’ ( B. Emergence of the secondary peaks

=5.8'=3). -
The use of the two previous power laws enables us to find Let us now chus our attention on the sec_ondary peaks

a scaling relation for the front. By plotting(t)/t* versus propagating behind the elastic front. The particles detached

) : ) ) from the front move backwards and their energy does the
(>.<i—vft.)/tﬁ wherev; is an adjustable parameter with the game (the system is globally conservativeThis energy
dimension of a speed, we found that the curves correspongiyopagating backwards is then transferred from particle to
ing to different values of collapse on a single one as shown yaticle ntil it reaches the left boundary where it is reflected
in Fig. 7. The collapse happens for a value 0f  ang starts to propagate forward. This is the beginning of the
=1001.5ms* which is very close to the sound speed propagation of a peak. The process then continues by means

1002.5 ms* (k=10" Nm™?). Itis worth noting thaw¢ is  of detachments of particles from this peak, contributing in
the speed measured at the center of mass of the front and ngjs way to the formation of new peaks.

at its maximum. The best collapse is obtained for the values |, grder to analyze in detail the evolution of the peaks we

of @=0.17 andp’=3. The exponeni changed t08’ in  |goked at the spatiotemporal structure of the contacts of the
agreement with the theoretical results whereas not ex-  first 100 beads of the chain. This can be seen in Fig. 8: a gray
actly equal toa’ since its calculation is based on kinetic got means that there is a contact between two beads whereas
energy conservation. In the present case energy is dissipatgdyhite dot means that they are not in contact. The compu-

from the front wave by the effect of detachment of particlestation of the contact distribution of the beads is done every
which induce a correction ta’. We can therefore write the 10-5 5 up to a propagation time of 280 3 s. At 10 ° s

following scaling law for the elastic front: almost all the beads are under compression. Then this com-
pression chain moves to the right, leaving empty spaces be-
vi(t) —f Xi— vyt (12) tween the first beads of the chain. This corresponds to the

t—a t8 ]’ formation of the front wave. As the compression chain trav-

els (the large gray triangle in the right lower corner of the
wheref is a scaling function that has also been calculatedlot) one can observe gray dots appearing at the beginning of
[11] andv;=1001.5 m s, the chain. This means that a new compression wave is being
This scaling relation allows us to describe the self-created. This wave is much thinner than the front wave and
similarity of the front wave shape. Another interesting fea-is represented on the plot by an almost straight curve with a
ture coming from the scaling relation is that the velocity of slope slightly above the slope of the front, showing that this
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2.3x10° from the spatiotemporal pattern is that beads which do not
belong to a peak are not under compression and are thus in a
ballistic regime, as one can see from the white spaces sepa-
rating the peaks in Fig. 8.

V. CONCLUSION

We have studied the response of a chain of beads to a
small displacement when no static force is applied to its
tis] ends. We observe a propagation of waves that is very differ-
ent from the solitons which can be seen in a Hertzian chain.

The nonlinearity of the problem lies in the contact law
used: a step function which indicates that there is no force
when two beads are not in contact.

By keeping the left end of the chain fixed we observed an
interesting bouncing phenomenon. In addition to the elastic
front, secondary peaks of decreasing amplitude are generated

10 at the left end of the chain. These peaks correspond to sev-
0 ; 102 eral beads in compression traveling in the forward direction
whereas the beads in between the peaks travel in the back-

FIG. 8. Spatiotemporal evolution of bead contacts. The first 100vard direction without touching each other. We have found
contact points of the chain are on the horizontal axis and time is omn interesting scaling law for the velocity of the beads be-
the vertical axis. The distribution of contacts is computed evenylonging to the elastic front. This law, which has also been
10"° s. Here we started at 18 s till 2.5x107% s. A white square  gerived analytically by HincH11], seems to be universal
means that there is no contact' between two beads whereas a grgifice it does not depend on the parameters of the problem.
one means that the beads are in contact. Starting from these results it would be interesting to look

at a chain submitted to other types of perturbations. Besides,
first peak travels slower than the front. It can be seen that thi¢ is important to look at different network&wo or three
other peaks are also formed at the begining of the chain, allimensionalin order to understand the effect of the network
making an almost straight gray line with a slowly increasingstructure on wave propagation.
slope, which means a decreasing speed. It is easy to under-
stanc_i that the exist_ence of these_peaks is qlue to reflections on ACKNOWLEDGMENTS
the first bead, which remains fixed, playing the role of a
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