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Self-Structuring of Granular Media under Internal Avalanching

S. Krishnamurthy,1 V. Loreto,1 H. J. Herrmann,1,2 S. S. Manna,3 and S. Roux4
1P.M.M.H. Ecole Supérieure de Physique et Chimie Industrielles, 10, rue Vauquelin, 75231 Paris CEDEX 05, France

2ICA1, University of Stuttgart, Germany
3Satyendra Nath Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Calcutta 700091, India

4Laboratoire Surface du Verre et Interfaces, Unité Mixte de Recherche CNRS/Saint-Gobain,
39, Quai Lucien Lefranc, F-93303 Aubervilliers Cedex, France

(Received 4 December 1998)

We study the phenomenon of internal avalanching within the context of recently proposed “Tetris”
lattice models for granular media. We define a recycling dynamics under which the system reaches
a steady state which isself-structured, i.e., it shows a complex interplay between textured internal
structures and critical avalanche behavior. Furthermore, we develop a general mean-field theory for
this class of systems and discuss possible scenarios for the breakdown of universality.
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There has been a lot of interest in understanding t
internal structure and geometry of granular packings [1
The rich phenomenology observed in experiments study
compaction, segregation, and force distributions, amo
other things, has prompted a number of numerical a
analytical studies. In another context the interest in gra
ular media has also been triggered by the search
self-organized criticality (SOC) [2]. As a result, surfac
avalanches in granular piles have been extensively st
ied both experimentally [3] and in computer models [2,4
in order to identify clear regimes of SOC-like behavio
[5]. In this Letter, we focus our interest on the interpla
between the internal structure of packings and power-l
avalanche distributions. We define a steady state dynam
under which the medium reaches aself-structured critical
state. We also focus on the internal structure of this st
and find, very interestingly, that it can be highly inhomo
geneous with strong segregation and ordering effects.

The model we have investigated is a recently propos
simple lattice model for describing slow dynamical pro
cesses in granular media [6]. The basic ingredients of t
model are the geometric constraints involved in packin
particles of different shapes. This model is seen to r
produce experimentally observed phenomena such as s
relaxation in compaction [6], segregation [7], as well a
aging [8].

Within the context of this model, we study the phe
nomenon of internal avalanches occurring under small p
turbations. But as opposed to previous works [9], w
focus on the stationary state that a system reaches un
the continued process of removing a particle from the b
tom layer and adding it back to the top of the system
Under this dynamics the system reaches a well defin
“critical” steady state in which the avalanche distribution
decay as power laws. Most interestingly, we find that
order to achieve this effect, the system restructures un
this dynamics to a very inhomogeneous state with orde
regions (grains) separated by disordered low-density ch
nels (grain boundaries) which act as preferential pathwa
0031-9007�99�83(2)�304(4)$15.00
he
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for these avalanches. We perform our numerical exp
ments for particles of several different shapes and fi
that the steady state reached is always as described ab
with an exponent for the power-law distribution which
the same for a large class of particle shapes. We
thermore develop a mean-field theory for systems u
dergoing this dynamics and explain, within this conte
why we observe a universal power-law distribution. W
elaborate on this point by considering a case when an
portant change in the rules of stability of particles chang
the steady state reached and hence the universality cla
the phenomenon.

We briefly review the definitions and some basic pro
erties of the Tetris models [6] used in our simulation
Frustration arises in granular packings owing to exclud
volume effects of particles of different shapes. This ge
metrical feature is captured in the Tetris model. In the f
lowing, we present results for the simplest version of t
model where the particles are either rods with two kinds
orientations, more complicated shapes such as “T”- sha
particles with two kinds of orientations, or “crosses” wit
arms of randomly distributed lengths in the framework
the so-called random Tetris model (RTM) [10].

The Tetris model can be defined as a system
particles which occupy the sites of a square latti
tilted by 45± with periodic boundary conditions in the
horizontal direction (cylindrical geometry) and a rigi
wall at the bottom. Particles cannot overlap, and th
condition produces very strong constraints (frustration)
their relative positions. This is illustrated for T-shape
particles in Fig. (1). In general each particle can
schematized as a cross with arms of different leng
which can be chosen in a regular [6] or in a random w
[10]. The system is initialized by inserting the particles
the top of the system, one at a time, and letting them mo
down under gravity. The particles perform an orient
random walk on the lattice until they reach a stab
position defined as a position from which they cannot f
any further because of other particles below them. T
© 1999 The American Physical Society
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FIG. 1. A steady-state configuration of the Tetris model
with T-shaped particles with two different orientations. The
boundary conditions are periodic in the horizontal direction.
The black particles are those which rearrange in the avalanche
caused by removing the lowest particle.

particles retain their orientations as they move, i.e., they
are not allowed to rotate. We now introduce the following
dynamics under which the system evolves. A particle
is removed from a random position at the base. This
could destabilize its neighboring particles above one of
which may then fall down if the geometry of the packing
allows for the motion (i.e., if the orientation of the particle
fits the local conformation). In this case, the disturbance
propagates upwards destabilizing particles in the layer
above and so on. We update the system sequentially,
moving all the unstable particles down until the system
is once more stable. The removed particle is then added
back at a random position at the top of the system. This
process is continued till the system reaches a steady state.

Similar procedures have been studied before for other
models [11,12]. While long-ranged avalanche distribu-
tions have been found in [11], the update rule assumed
in [12] does not lead to a critical state. We go beyond
these previous works by studying here, in detail, the in-
terplay between the avalanche distribution and the density
profile of the medium. We explain the means by which
the system reaches a critical state by developing a generic
mean-field theory for avalanche distributions in dense or
loose packings. We utilize the possibility afforded by this
model, of easily changing particle shapes, to study this
behavior for a wide variety of particle shapes. Most in-
terestingly, we also find that this “critical” steady state is
inhomogeneous and strongly ordered, different from those
ordinarily studied in most SOC systems. These are thus
some of the new features reported in the present study.

Figure 2a is a picture of a packing of in the steady state.
As can be seen, it shows a complex textured structure.
Namely, beginning from an initial state in which particles
of different shapes are homogeneously mixed, the packing
always “segregates” under the dynamics so as to form
ordered high density grains separated by grain boundaries
at lower densities. All avalanches preferentially propagate
FIG. 2. Typical avalanches in the steady state for a system of
T-shaped particles (left) and sticky particles (right).

inside these grain boundaries, i.e., no matter where
the initial seed, the avalanches find their way into the
boundary region (see Fig. 2, left).

The size of an avalanche is defined as the total number
of particles destabilized by the process of removing
a particle at the bottom. The size distribution of the
avalanches decays like a power P�s� � s2t . This was
studied for the three different types of particles described
above. Time averages were performed in the steady
state over �106 configurations in order to obtain good
statistics. Figure 3 shows the avalanche distributions
obtained for two different choices of the particles: the
T’s shown in Fig. 1 and particles with random shapes
obtained in the framework of the RTM. In both cases
one observes a scaling behavior for the avalanches with
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FIG. 3. P�s� vs s in the steady state for T-shaped particles
and the “crosses” (RTM): t � 1.5 6 0.05 in both cases.
The system sizes shown are Lx � 100, Ly � 500 and Lx �
200, Ly � 650, 1000, respectively, for the “T’s” and Lx �
100, Ly � 150, Lx � 200, Ly � 300 for the “crosses.” The
last curve shows the avalanche distribution for a system of
sticky particles (see text). In this case one gets t � 1.9 6
0.05. The system size shown is Lx � 200, Ly � 350.
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t � 1.5 6 0.05. In the case of the rods, the result is
sensitive to the aspect ratio of the system, but for systems
of about equal width and height the exponent of the
avalanche distribution is again the same.

We now turn to a discussion of the avalanche statistics
within the framework of a mean-field theory that we
develop for this class of systems. It is apparent from our
numerical studies reported so far that under this dynamics,
the system reaches a steady state which is critical. The
reason could be the following: Taking out a particle in the
last layer creates a void in the packing. This can either
move up (by exchanging place with a particle), die (if
nothing above is destabilized), or free another neighboring
void (and hence multiply) and propagate. The dynamics
is thus essentially like a branching-annihilating process
on the lattice where the probabilities for annihilating
P0, branching P2, and propagation P1 � 1 2 P0 2 P2
depend on the density of the packing. However, there is
also a feedback effect. The avalanche distribution can in
its turn affect the density of the system: large avalanches
that reach the top tend to compactify the system and small
avalanches make the system looser.

We can make the above arguments more precise
in the following way. Let rh�t� be the cumulative density
of the system up to height h at time t. Then the density
of the system at time t 1 1 will be

rh�t 1 1� 2 rh�t� � 21�L2 1 a�t�hg�L2 , (1)

where L is the linear size (height) of the system. The
first term of the right-hand side represents the effect of
removing one particle. This is the sole contribution of
avalanches which die before reaching the height h. On the
other hand, those avalanches which reach at least a height
h have the additional effect of increasing the density of
the system by an amount equal to the number of voids
which escape at h. This is equal to the width of the
avalanche at h. If the avalanches are self-affine (as in
[11], and also in the case studied here), i.e., an avalanche
of height h has a width of hg , then the density increase
is precisely given by the second term. The coefficient
a�t� is just a random variable which takes the value 1
whenever an avalanche reaches at least a height h and a
value 0 otherwise. In the steady state, we can perform
a time average on Eq. (1). We expect the left-hand side
to vanish in this case. To evaluate the right-hand side,
we note that the time average of a�t� is simply 1 2Rh

0 P�h� dh. We measure P�h� numerically and observe
the existence of a scaling region where P�h� � h2b

with b � 1.95 6 0.05. We also independently measure
g (by measuring the characteristic size s� � h11g of
the avalanche size cut off at height h). We find g �
0.9 6 0.1.

The above equation makes a prediction for the
avalanche exponent. The steady state condition requiring
that the average density of the system � r� � const
implies that b 2 1 � g. From the numerically mea-
306
sured value of b mentioned above, we see that we find
g � 0.95 consistent with the numerically measured
value of g. Making a change of variables from the
avalanche height h to the avalanche size s gives us the
relation �1 2 P0�h��hg � hg�h�11g� �12t� � 1 where
P�s� � s2t is the avalanche size distribution in the
steady state. The above scaling relation for b 2 1 � g

then translates to (also obtained in [11] using a steady
state argument)

t � 1 1 g��1 1 g� . (2)

Using again our numerical estimate for g we find t �
1.47 6 0.05 consistent with the data shown in Fig. 3.

A more complete and self-consistent description of the
observed phenomenology can be obtained complementing
Eq. (1) with an equation for the avalanche distribution
P�s� in terms of r, i.e., with an equation

P���s�t���� � F���r�t���� , (3)

where F indicates a generic function of r�t�. The two
coupled equations (1) and (3) should then describe the
evolution of the system to a steady state given by a
critical density rc with an avalanche distribution decaying
as a power law. In general, it is difficult to write an
exact equation for the avalanche distribution in terms
of the density except for avalanches propagating on
the Bethe lattice [13]. In this case, it is possible to
show quite simply that the feedback effect of Eq. (3) on
Eq. (1) results in the system reaching a critical density
rc given simply by the equation P1�rc� 1 2P2�rc� � 1
where P1 and P2 are the probabilities for propagation
and branching, respectively, introduced before. We have
investigated analytically and numerically that the mean-
field theory is insensitive to the exact functional form
of the birth-death probabilities and avalanches always
decay with an exponent t � 1.5 at the critical density. A
more detailed analysis of the above equations considering
different explicit forms of F is considered elsewhere [14].

The scaling relation (2) always holds for systems with
open boundary conditions provided there is a compact
bulk packing. This poses an upper limit to the exponent
t. For nonfractal bulk packings with a smooth free
surface, g cannot be larger than 1 and hence t cannot
be larger than 1.5. It is interesting to note that the
avalanches decay with the same exponent as in mean-
field theory. However, the reason for this exponent here is
that the avalanches propagate in a conical region (implied
by g � 1) centered around the grain boundary (since,
as mentioned before, avalanches propagate most of the
time at the grain boundary). These facts imply, from the
scaling relation (2), that t � 1.5.

Although our results have so far shown a universal
behavior, we identify within the framework of this theory
at least one clear instance of the breakdown of this
universality. This has to do with having a very loose
packing in the system. If this is the case, particles can
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fall large distances in the course of an avalanche and
compactify the system far below. It would then not only
be the width of the avalanche at height h which would
contribute to the compactification but some fraction of
the whole avalanche above h. Such an effect is clearly
not taken into account in Eq. (1) which hence implicitly
assumes that particles fall only short distances. We thus
have to rewrite the above mean-field theory for a loose
system for which the particles can fall large distances. We
can quantify the above statements by rewriting Eq. (1) in
the following manner:

rh�t 1 1� 2 rh�t� � 2
1
L2 1

1
L2

Z `

s�

�s 2 s��as2t ds ,

(4)

where s� is the typical size of an avalanche reaching
a height h and a is a measure of how much of this
avalanche contributes to heights less than h. Making a
change of variables and taking the s� dependence out
of the integral, we find that the relevant scaling relation
is now expressed in terms of s� as t � 1 1 a. Since
a # 1 (if the total avalanche above h contributes, then
a � 1) we find that for systems with very loose packings
the upper bound for the avalanche distribution is now
t # 2 and not 1.5 as before.

We have checked this by changing the stability con-
dition for particles to get a much looser packing. In all
the cases considered above, the particles need to be stable
in two directions in order not to fall. We modified this
by looking at a system of sticky particles, in which one
downward contact in either direction suffices for stability.
Repeating the same recycling procedure used throughout
the paper we find in this case a stationary state with a non-
compact bulk packing (Fig. 2, right). For this system, we
find an avalanche distribution in the steady state charac-
terized by an exponent t � 1.9 6 0.05 (see Fig. 3) out of
the range of validity of Eq. (2) and in the range of validity
of the scaling relation predicted by Eq. (4).

There are several features that it is of interest to in-
vestigate further. An instability mechanism for produc-
ing structured steady states has yet to be developed [14].
Further, it would be interesting to see how these struc-
tures coexist with power-law avalanches and whether fi-
nite driving destroys this effect. In this context it can
be seen from Fig. 3 that the big avalanches are enhanced
well over the power law. It could be of interest to inves-
tigate whether this is just a finite-size effect or whether
the structures play a role in this [14]. Within the context
of this model we have also studied a system of spheri-
cal particles (i.e., crosses with roughly equal extensions in
either direction). This is the case closest to the one stud-
ied in [11] in which the particles are all the same shape.
We find that though a density plot is not sufficient to spot
structures, an activity plot (marking how many avalanches
pass through every site over a period of time) shows very
distinctly that there are always long-lived loose regions
where avalanches preferentially propagate with t � 1.5.
It is hence tempting to conclude that this dynamics always
results in long-lived inhomogeneities (with easy channels
for particle flow) which affect the avalanche distribution.
Finally, it is interesting to speculate what our results imply
for possible experiments on the phenomenon of internal
avalanches. One implication might be that a real system
subjected to the continual process of removal and addition
of grains will “ fracture” (as in our model) developing easy
regions for particle flow. It would be very interesting to
see whether this is observable.
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