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Abstract. We investigate the response properties of granular media within the framework of the
so-called random Tetris model. We monitor, for different driving procedures, several quantities:
the evolution of the density and of the density profiles, the ageing properties through the two-times
correlation functions and the two-times mean-square distance between the potential energies, the
response function defined in terms of the difference in the potential energies of two replicas driven in
two slightly different ways. We focus, in particular, on the role played by the spatial inhomogeneities
(structures) spontaneously emerging during the compaction process, the history of the sample and
the driving procedure. It turns out that none of these ingredients can be neglected for the correct
interpretation of the experimental or numerical data. We discuss the problem of the optimization
of the compaction process and we comment on the validity of our results for the description of
granular materials in a thermodynamic framework.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Granular media‖ are usually considered to be non-thermal systems because their thermal
energy is so negligibly small with respect to other energy contributions (e.g. potential energy)
that for all the practical purposes they are virtually at zero temperature. This feature draws a
lot of consequences from the point of view of the validity of thermodynamics for such systems.
One of the most important consequences is that, unless perturbed in some way (e.g. driving
energy into the system), a granular system cannot explore its phase space spontaneously, but
remains trapped in one of the numerous metastable configurations. One has then to look at
the dynamics of a granular system always as a response to some perturbations and in general
the response will depend in a non-trivial way on the rheological properties of the medium, on
the boundaries, on the driving procedure and, last but not the least, on the past history of the
system.

In this paper we focus on the response properties of a class of lattice models, the so-
called random Tetris model (RTM) [2], that, despite their apparent simplicity are able to
reproduce many features of real granular materials: slow-relaxations during compaction [2, 3],
segregation [4], dilatancy properties [5] and ageing [6].

§ Unité Mixte de Recherche UMR 8627.
‖ For a recent introduction to the overall phenomenology see [1].
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We shall be concerned, in particular, with the interplay between the response properties and
the spatial structures that emerge spontaneously as a consequence of the dynamics imposed on
these systems. Several examples in this direction have already been drawn: the phenomenon
of structures formation that plays a crucial role in explaining the complex features of internal
avalanching [7] or the coarsening phenomena that parallel the vibration-induced compaction
process (to be discussed in a forthcoming paper [8]).

We shall consider several procedures of vibro-compaction and we shall study how the
system responds to different procedures and how the emerging inhomogeneities affect the
response properties of these systems. The vibration procedures are specified in terms of the
temporal function describing the evolution of the shaking amplitude. The simplest case is the
one where one keeps the shaking amplitude constant indefinitely. More generally we shall
consider complex procedures corresponding to sequences of cooling and annealing processes.
In all the different cases we monitor several quantities. On the one hand, we focus our attention
on global quantities such as the global density, the response and the correlation functions. On
the other hand, we monitor some local quantities that allow us to investigate the large-scale
structures emerging spontaneously in these systems as a response to the imposed perturbation
(driving). The comparison between global and local quantities will be a valuable tool towards
an understanding of how granular materials respond to perturbations and in this perspective of
the importance of spatial structures.

Within this framework we can address several questions. One of the first issues we can
investigate is the importance of the history, i.e. the specific procedure undergone by the sample
before we perform our measurements. It is interesting to ask where the history of the system
is encoded and, for instance, whether the global density represents a good parameter for the
description of a static packing or one needs to specify other parameters. The analysis of the
correlation functions will allow us to investigate under which conditions the systems exhibit
ageing behaviour. On the other hand, with the knowledge of the effect of different kinds of
perturbation, we shall address the problem of the optimization of the compaction procedures
that can be stated as follows: single out the best sequence of perturbations to impose onto the
system in order to maximize the density measured in a suitable part of the system.

Our results will also allow us to comment on the existence of transitions in the response
properties and on recently published results concerning the violation of the fluctuation–
dissipation theorem (FDT) for granular media [9].

This paper is organized as follows. In section 2 we recall the model definition, we define the
different dynamical procedures and we introduce the quantities we shall look at for the analysis
of the response properties. Sections 3 and 4 are devoted to the analysis of the response properties
during a process of continuous shaking at constant amplitude and during cyclic procedures,
respectively. In section 5 we discuss globally all the results comparing different procedures
and different histories and commenting on the consequences from the thermodynamic point
of view. Finally, in section 6 we draw our conclusions.

2. Model definition

The essential ingredient of the RTM [2] is the geometrical frustration that for instance in
granular packings is due to excluded-volume effects arising from the differently shaped
particles. This geometrical feature is captured in this class of lattice models where all the basic
properties are brought by the particles and no assumptions are made about the environment
(lattice). The interactions are not spatially quenched but are determined in a self-consistent
way by the local arrangements of particles. Despite the simplicity of their definition, these
systems present a highly complex phase space and their dynamics generates automatically
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Figure 1. Sketch of a local arrangement of particles in the
random Tetris model: each particle can be schematized
in general as a cross with four arms of different lengths,
denoted by lNE , lNW , lSE , lSW , chosen in a random way.

a very rich gallery of time–space correlations: time-scales, spatial structures, memory, etc.
Furthermore, they show a very interesting interplay between the dynamics and the time–space
structures. It is worth noting how in this class of models the origins of randomness and of
frustration coincide because both are given in terms of the particle properties.

Let us recall briefly the definition of the model, which includes, like in the real computer
game Tetris, a rich variety of shapes and sizes. On a lattice each particle can be schematized in
general as a cross with four arms (in general, the number of arms is equals to the coordination
number of the lattice) of different lengths, denoted by lNE , lNW , lSE , lSW , chosen in a random
way. An example of particle configuration on a tilted square lattice is shown in figure 1.

The static properties of the system are then completely characterized by giving the random
numbers defining the particles. These numbers are given once for all particles and it is clear
how in this way one has a complete freedom in the choice of the system; the models used in
[3, 4] are particular cases of the general model where one has chosen the particle sizes and
shapes in a deterministic way.

The interactions among the particles obey the general rule that one cannot have
superpositions. For instance, one has to check that for two nearest-neighbour particles the
sum of the arms oriented along the bond connecting the two particles is smaller than the bond
length. It turns out that in this way the interactions between the particles are not fixed once
and for all but they depend on the complexity of the spatial configuration. We shall return to
this point later on in connection with the interplay between the dynamics and the emergence
of spatial structures.

The extreme generality of the model definition allows a large variety of choices for the
particles. Just to give an idea of how the system can be chosen, let us consider two different
versions of the RTM that we shall denote by A and B.

(A) A system with random elongated particles. This case represents the direct generalization of
the system considered in [3]. Instead of considering two types of elongated particles with
fixed sizes we consider elongated particles whose size is chosen randomly according to the
expressions lNE = lSW , lNW = lSE , lNE = 3

4d ± 0.1dη, lNW = d − lNE and equivalently
for the other orientation. η represents a random variable distributed uniformly in [0, 1].

(B) A system with random particles with spherical symmetry. In this case we have particles
whose size is chosen randomly according to the expressions lNE = lSW , lNW = lSE ,
lNE = 1

2d ± 0.2dη, lNW = 1
2d ± 0.2dη.
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Figure 2. Example of a stable packing configuration for a system of type A (left) and B (right)
(see text). In all our simulations we used particles of type A.

In all our simulations we have always used, without loss of generality, systems with
particles of type A. With the above given rules one can define the allowed configurations.
For instance by introducing gravity one can decide whether a certain configuration (packing)
is mechanically stable or not. For instance, figure 2 shows examples of mechanically stable
configurations under gravity for the cases A and B. In these cases a tilted square lattice was
used to implement the existence of a preferential direction in the system.

The dynamics will then consist in general of a diffusion constrained by the particle
geometry. In the following sections we shall be concerned with the case of the vibration-
induced compaction phenomenon [10].

One of the possible ways to implement a vibration or a shaking procedure in the RTM
model is to consider a Monte Carlo dynamics where the particles diffuse on the lattice according
to some rules, as explained below. One can actually choose the specific dynamics in several
ways. In the following we discuss some examples.

The system is initialized by filling the container idealized as a lattice with lateral periodic
boundary conditions and a closed boundary at the bottom. The procedure of filling consists
in inserting the grains at the top of the system, one at a time, and letting them fall down,
performing, under the effect of gravity, an oriented random walk on the lattice, until they reach
a stable position, say a position in which they cannot fall further. This filling procedure is
realized by the addition of one particle at a time and stops when particles can no longer enter
the box from the top.

In the case of shaking the dynamics can be divided into several alternating steps where the
system is perturbed by allowing the grains to move in any allowed directions with a probability
pup to move upwards (with 0 < pup < 1.0) and a probability pdown = 1 − pup to move
downwards. Each step lasts until a fixed number of N moves per particle have been attempted
with a fixed value of x = pup/pdown. The quantity x can be related to the adimensional
acceleration � used in compaction experiments [10] through the relation � � 1/ log(1/

√
x).

More precisely the single dynamical step consists of the following operations:

(a) extracting a grain with uniform probability;
(b) extracting a possible movement for this grain among the nearest neighbours according to

the probabilities pup and pdown;
(c) moving the grain if all the possible geometrical constraints with the neighbours are

satisfied.
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One is then free to choose the desired sequence of steps depending on the quantities one wants
to monitor or on the experimental procedures one wants to reproduce.

The easiest possibility is the continuous shaking realized by letting the system evolve
continuously with a fixed and constant x. We shall discuss this case in section 3. Another
possible procedure, explored in [3], mimics the process of tapping and it comprises two
alternating steps. First, in a ‘heating’ process (tapping) the system is perturbed by allowing
the grains to move in any allowed directions with a probability pup to move upwards and a
probabilitypdown = 1−pup to move downwards. After each tapping has been completed (i.e. a
fixed number ofN moves per particle have been attempted with a fixed value of x = pup/pdown)
we allow the system to relax setting pup = 0. The relaxation process (‘cooling’) is supposed
to be completed when particles can no longer move under the effect of gravity, i.e. unless pup

is switched on. After this relaxation the system is in a stable static state and one restarts the
cycle.

More generally one can define complex cycles where one changes the value of x during
the evolution of the system according to some specific temporal function. This is the most
general case that allows one to impose specific histories. We shall discuss this case in section 4.

Before describing the results in a detailed way, let us define the different quantities we
shall be monitoring during the shaking procedure. Denoting with (i, j) the coordinates of
a generic site, where i indicates the horizontal coordinate and j the vertical one along the
direction of gravity, we can define with m(i, j) the mass content of the site (i, j) in such a
way that m(i, j) = 1 if the site contains a particle and m(i, j) = 0 otherwise. With these
definitions in mind we shall monitor the evolution of the following quantities.

Density profile. The density profile gives the value of the density (averaged over horizontal
layers) as a function of the height. It represents the simplest, though rough, way to characterize
the inhomogeneities in the system: since the gravity is acting in the vertical direction, we
concentrate on the heterogeneities that can occur in this direction. In formulae we have

p(j, t) = 1

L

L∑
i=1

mi,j (t) for j ∈ [0 : M] (1)

where L is the width of the system and M is its maximal height.

Average density. The density of the packing, i.e. the fraction of sites occupied with respect
to the total number of sites, is measured after each relaxation step and, in correspondence with
real experiments, we plot the behaviour of this density as a function of time. In order to avoid
finite-size effects we considered systems with a linear size of at least L = 50 sites and, in
order to be sure of observing bulk effects, we measured the density in the lower 25% or 50%
of the system.

Response function. The response function is defined as the change in the potential energy
of the system for a small change in the value of x. What we do in practice is evolve the
system for a certain time tw. At tw we define a replica of the system whose mass content will
be described by mr

i,j and we let the original system evolve with the same x and the replica
with x ′ = x + δx, where δx is small enough to keep the linear response approximation valid.
At times larger than tw we monitor the evolution of the potential energy for the two replicas
defined as P(t + tw) = ∑

i,j mi,j (t + tw)(j + 1) and Pr(t + tw) = ∑
i,j m

r
i,j (t + tw)(j + 1). The
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response of the system is defined as

R(t + tw, tw) = Pr(t + tw)− P(t + tw)

Npart
(2)

where Npart is the total number of particles in the system. We also monitor the density profile
of the replica, pr(j, t + tw), and the difference �p(j, t + tw) = pr(j, t + tw) − p(j, t + tw)

between the profiles. Note that R(t + tw, tw) can also be written as R(t + tw, tw) =∑
j �p(j, t + tw)(j + 1)L/Npart .

Correlation functions. We have considered two kinds of measures of the temporal
correlations. The two-times mass–mass correlation function, defined as

C(t + tw, tw) = 1

Npart

∑
i,j

(mi,j (t + tw)mi,j (tw)) (3)

and the mean-square distance between the potential energies at times tw and t + tw, defined as

B(t + tw, tw) =
(∑

i,j (j + 1)mi,j (t + tw)

Npart
−
∑

i,j (j + 1)mi,j (tw)

Npart

)2

= (
h(t + tw)− h(tw)

)2
(4)

where the overbar indicates the average over different realizations and h(t) indicates the height
of the centre of mass at time t .

It is worth noting that we decided to measure the two-times mass–mass correlation function
via equation (3) instead of the two-times correlation function for the global density [6] because,
as will become clear in the following, the definition of the global density is somehow arbitrary
in these systems with a preferential direction imposed by gravity.

We have used system sizes L × M of 60 × 60, 120 × 60 and 60 × 120 to ensure that
finite-size effects were irrelevant. We let the system evolve for 106 Monte Carlo steps per
particle after a preparation (waiting at constant x or other more complicated histories) during
up to 106 Monte Carlo steps per particle. Averaging was performed on up to 1000 samples.

3. Response properties of a system subject to continuous shaking

In this section we present the results of the simulations for a system subject to continuous
shaking at constant x.

The mean density, calculated in the lower 25% and 50% of the box, grows slowly, from
an initial value ρ0. This value is not universal but depends on the choice of particles and
on the fraction of the system where one performs the average. Figure 3 shows the evolution
of the density measured in the lower 25% and 50% of the system for different values of x.
It is interesting to note that there exists an optimal value of x that allows one to obtain the
maximal density in the fraction of the system considered for the averaging procedure. At small
times this optimal value depends on time due to the crossing of the different curves. This fact
already suggests that, in order to compactify the system, the optimal strategy will not be to
keep x constant, but rather to vary it. This type of behaviour was also observed recently in the
parking-lot model [11]. However, in our case the mechanism responsible for these phenomena
can be understood by looking at the density profiles (see below), a concept which is absent
in the parking-lot model. Moreover, if we compare the data for the bulk density computed as
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25% or 50% of the bulk, we see that the curves differ and that the optimal value of x is around
x � 0.6 in the first case, and around x � 0.8 in the other. This feature can be explained by
noticing the combined effect of two factors: on the one hand, the bulk compactifies better for
larger x. For example, in the data of [10], taken at the bottom of the sample, the density is
an increasing function of the shaking amplitude; on the other hand, increasing x, the interface
becomes broader and can affect the global bulk density effectively reducing it. As a result there
will be an optimal x which for instance is smaller considering the measure of the density in
the lower 50% of the system with respect to the measure in the lower 25% because one needs
a larger x in order to extend the interface deeper and deeper. This phenomenology represents
an indication that heterogeneities are quite relevant and that particular attention needs to be
taken in defining the observed quantities. Our finding of an optimal shaking amplitude is, in
fact, in agreement with previous experimental results [10]. We recall for this that x and the
adimensional acceleration � can be linked by the relation � � 1/ log(1/

√
x). In compaction

experiments [10] it was observed that the density, measured on the lowest part of the system,
was an increasing function of the shaking amplitude. However, the authors were expecting
this density to ‘decrease upon further acceleration increase’, since their experiments probed
only the regime of relatively low shaking intensity. Moreover, such a decrease is expected to
be more apparent in two-dimensional systems [12], which is the case of our model.

The growth law for the density has been shown by various authors to be, experimentally
[10] and for many models [3, 13], well described by the functional form

ρ(t) = ρ∞ − ρ∞ − ρ0

1 + B ln(1 + t/τ )
(5)

where ρ∞, the asymptotic density, B and τ are fitting parameters depending on the shaking
amplitude. Also in our case equation (5) is satisfied and one can actually collapse all the curves
into a unique logarithmic function. Figure 4 shows the collapse of the density curves measured
in the lower 50% of the system (one obtains similar results using the curves of the density
measured in the lower 25% of the system) for three different values of x (x = 0.1, 0.6, 0.7)
and for different values of tw (i.e. the measure of the density begins at tw instead of 0, which
of course changes the parameters in equation (5)): the functional form is tested by plotting the
rescaled density (ρ(t)− ρ0)/(B(ρ∞ − ρ(t))) versus t̃ = t/τ , and comparing it with ln(1 + t̃ ).

In all cases the functional form (5) is quite well satisfied with τ simply proportional to
tw, ρ∞ being a bell-shaped function of x† and B exhibiting a complex dependence on tw and
x. Several remarks are in order. The fitting parameters depend on the fraction of the system
where one measures the density. On the other hand, the logarithmic fit starts to be valid after a
transient time of the order of 50–500 iterations depending on x and on the fraction of the system
used for the measurements. This behaviour is quite understandable. Before compaction can
start in the bulk a weak decompaction is in order which is stronger for higher x and which
extends at longer times if one is measuring the density in a deeper region. One can actually
notice the decompaction process in figure 3, especially for large values of x. Only after the
decompaction process ends can one hope for equation (5) to be valid. This is the reason why
we have considered the collapse of the density curves obtained after a suitable waiting time tw.

A different way of measuring the compaction is to look at the mean height, or potential
energy P defined in section 2. In this case, the whole system is considered. We see in figure 5
that, also in this case, there exists an optimal value of x for which one has the lowest position
of the centre of mass. Also in this case we find an agreement with the experimental findings

† ρ∞ depends on x and is not 1 as in the simplest Tetris model [3], where the existence of a ground state with a perfect
antiferromagnetic ordering allows the configuration at a density of 1. In the RTM the random choice of particles
removes this limitation.
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Figure 3. Time-evolution of the bulk density ((a) 25% and (b) 50% of the system) for several
shaking amplitudes. The insets show the density at time t = 104 as a function of x. Note in both
cases the existence of an optimal value of x, that depends on the fraction of the system where one
measures the average density.

of [10] where the density measured from the height of the system was an increasing function
of the shaking amplitude, while the authors expected the presence of a peak ‘upon further
acceleration increase’.

It is, however, already clear how the previous measurements, which are averages over the
whole (or over an extensive part) of the system, cannot represent comprehensive information
about the system. For example, in the measure of the mean height the interface gives a large
contribution, while it is practically negligible if one is interested in bulk properties. Therefore,
before turning our attention to a more detailed description of the system let us now study the
two-times correlation function C(t + tw, tw) which, as usual in ageing phenomena [14], gives
a determination of the age of the system, since it depends on t and on tw.
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Figure 4. Collapses of the rescaled density (ρ(t) −
ρ0)/(B(ρ∞ − ρ(t))) versus the rescaled time t̃ = t/τ ,
whereB, ρ∞ and τ are fitting parameters, for (a) x = 0.1,
(b) x = 0.6 and (c) x = 0.7, and for densities measured
after various tw .

Figure 5. Potential energy (or mean height) of the system,
for various x and measured after tw = 104.

In figures 6 and 7 we show the behaviour of C(t + tw, tw) for several values of x and
tw. We observe for this model the typical ageing behaviour, with a first part for t � tw
approaching a quasi-equilibrium curve where time-translation invariance is respected (i.e. for
t � tw, C(t + tw, tw) approaches a curve depending only on t) a plateau, and, at t  tw,
a second decay, dependent on tw, corresponding to ageing. We note that this behaviour,
which is very common in ageing phenomena [14], is more realistic than that of the simplest
Tetris model [3], where the plateau is at C = 1, so that only the second decay is observed
[6]. As tw grows, the plateau is better defined and the second decay appears at longer
times.
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Figure 6. Correlation function C(t + tw, tw) as a function
of t , for (a) x = 0.1, (b) x = 0.6 and (c) x = 0.7, and
various values of tw . The ageing behaviour with a two-
step relaxation is evident.

Figure 7. Correlation functionC(t+tw, tw) as a function
of t , for x = 0.2 and 0.4, tw = 104 and 105: the
correlation decays faster for higher x.

The global properties of the correlation function depend smoothly on the shaking
amplitude: as x grows, the correlation decays faster, as shown in figure 7. However, the
curves do not differ qualitatively and have similar shapes.

In [6] the two-times correlation function for the global density was measured in the simplest
version of the Tetris model. In this case it was proposed that the relaxation was of the form
ln(t)/ ln(tw) (the exact proposed form was (1 − c∞) ln((tw + ts)/τ )/ ln((t + tw + ts)/τ ) + c∞,
where c∞, ts and τ were three fitting parameters), for very small values of x (in the range
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[10−4; 10−1]). This form could fit all the curves since, as already mentioned, the first decay
was non-existent.

Since, as has been pointed out in the above discussion, the definition of the system density
is somehow arbitrary, we decided to measure the two-times mass–mass correlation function
via equation (3). In our case, we only attempt to fit the second decay, i.e. the ageing part; since
we expect weak ergodicity breaking [15], we propose a form going to zero at long times:

C(t + tw, tw) = a

1 + b ln(1 + t/τ )
for t  tw (6)

with a, b, τ fitting parameters. We show in figures 8 and 9 that we can collapse the curves using
equation (6) and plot the rescaled correlation function C̃ versus the rescaled time t̃ according
to

C̃ = bC

a + (Ab − 1)C

t̃ = t/τ

(7)

and obtain C̃ = 1/(A + ln(1 + t̃ )). A is an irrelevant parameter introduced to avoid the
divergence of C̃ at t̃ → 0, and whose value can be read in the figures. The behaviour of the
fitting parameters is the following: a is roughly constant, while τ evolves proportionally to
tw, and b as the inverse of the logarithm of tw. This leads to the conclusion that the overall
behaviour of C(t + tw, tw) is of the form log(tw + t)/ log(tw). We note that this is in agreement
with the findings of [6], on a much wider range for x, but in contrast with the parking-
lot model, for which a t/tw behaviour has been observed [16], where, as in [6], a different
definition of the correlation function was used: the correlation function of the densities. An
experimental measure of the correlation functions would be welcome to discriminate between
these predictions.

For completeness, we show in figure 10 the behaviour of the mean-square distance between
the potential energies,B(t+tw, tw) defined in the introduction though equation (6). B(t+tw, tw)
is an increasing function of t , displaying ageing behaviour with two steps separated by a plateau,
as for the correlation function.

Before turning our attention to the response function defined in equation (2) let us add
one important piece of information concerning the density profiles. It turns out, in fact, that
it is essential to look at the inhomogeneities in the system in order to correctly interpret the
response results. We shall do this by looking at the density profiles and at the differences
between the profiles of the system and its perturbed replica, which will give information on
the spatial structures, at least along the vertical direction.

We have monitored the density profiles p(j, t), as defined in equation (1), of the system
and of its replica after tw. While the curves of the evolution of the bulk density (or of other
global quantities likeC orB) have similar shapes for all values of x (equation (5) and figure 3),
the density profiles can exhibit very different behaviours. In figure 11, we display the short-
time (t = 0–104) evolution of the profile for several values of the shaking amplitude, starting
from the same profile for all values of x. In figure 12, we display the successive evolution, for
tw < t < tw + 106 with tw = 104. The first observation is that the width of the interface is
larger for higher shaking amplitudes, which is a quite intuitive result. Moreover, we see that,
for small shaking amplitudes, a very dense layer forms just under the interface. This layer
(whose height is of five to ten lattice sites) is able to block the compaction process: in order to
make the system more compact particles have to also rearrange in the bulk, and the dense layer
acts as a barrier. The bottom part of the sample is therefore almost not evolving, as shown in
figure 12. As time evolves the dense layer becomes broader, though in a very slow way. In all
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Figure 8. Collapse of the ageing part of the curves for
the same values of x and tw (five values for each x) as
in figure 6; the rescaled correlation (see text) is plotted
versus the rescaled time t/τ , and compared with the form
1/(A+ln(1+t̃ )); the first part of the curves, not collapsed,
corresponds to the first relaxation (approach to a quasi-
equilibrium behaviour).

Figure 9. As in figure 8 for x = 0.2 and 0.4.

cases, the comparison of figures 11 and 12 also shows that the short-time dynamics is much
faster than the successive evolution.

We note that these results are in agreement with experimental results showing that, at not
too large shaking amplitude, the compaction is more efficient in the higher parts of the media
(see the first reference in [10]) and that the locally measured density is larger in higher parts
of the sample.

For higher x, diffusion is easier, and the layer forming at the top is less dense, broader and
evolves faster (see in figure 12 the evolution of the dense layer for x = 0.1, 0.2, 0.4, 0.6); the
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Figure 10. Evolution of the mean-square distance
between the potential energies, B(t + tw, tw), with t , for
(a) x = 0.2, (b) x = 0.4 and (c) x = 0.7, and various
tw .

compaction process in the bulk is therefore facilitated: thus, even if the interface is broader,
which could indicate a less dense system, the bulk will be able to compactify much better. The
global density can therefore, in fact, be enhanced. This explains that, at least at finite times,
the curves of the density can be higher for higher x, while one would expect the contrary
starting from a dense system; of course, for very strong shaking, the system is very loose and
the interface is very wide: this explains the existence of an optimal shaking amplitude for
compaction (see figure 3) and, as mentioned before, why this optimal amplitude depends on
the method of defining the bulk (it corresponds roughly to the value of x for which the interface
attains the defined bulk).

We again have an indication of the importance of looking at the density profile: two very
different profiles can have the same bulk density or potential energy (mean height).

Let us now turn to the analysis of the response function. As described in the introduction,
we let the system evolve at constant x during a certain waiting time tw, and then make a copy
of the system, which we submit to a slightly different shaking, i.e. x + dx. We have mostly
used dx = 0.01, and checked with dx = 0.005 and dx = 0.02 that the system was in the
linear response regime (especially for x = 0.1 for which dx = 0.01 is 10% of x).

The response function has been introduced in section 2 through equation (5): it is defined
as the difference between the potential energy of the two copies of the system. Therefore,
a positive response means that the perturbed system (at higher x) has a higher energy, and
therefore it is less compact than the unperturbed one. This is what one clearly expects at high
x for example, where the system is very loose and a higher x means that the particles are less
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Figure 11. Density profiles for various values of x, evolving in time (t = 0–104), with no waiting
time: the evolution starts from the same profile for all values of x. We see the formation of a dense
layer for small x, and the evolution towards a smoother profile for large x.

subject to gravity. On the other hand, a negative response means that the perturbed system is
more compact than the unperturbed one. This is not to be excluded a priori, since we have
already seen in figure 3 that the density at a fixed time is not a monotonic function of x.

For x = 0.1, we indeed see (figure 13) that the response exhibits first a positive branch
followed, after a certain time that depends on x and tw, by a negative branch. The system is
first relatively decompactified by the perturbation (positive response), but then, at later times,
it compactifies better. This phenomenon was first noted in the case of the Tetris model in
[9], where, however, only small values of tw were used, and more emphasis was given to the
negative part. For a fixed x, however, as tw grows, the positive part extends to longer times
and cannot be neglected.

As x grows, the positive part gets a higher amplitude and extends to longer times, and for
x � 0.7 no negative response can be reached (figures 13 and 14).

This apparently odd behaviour can be understood by looking at the density profiles, and
especially at the differences of the profiles between the perturbed and unperturbed systems,
i.e. at the spatial distribution of the response. The response consists of two main contributions.
On the one hand, the interface gives a positive response, i.e. a larger x will naturally lead to a
looser interface, because a larger x means a higher probability for the particle to move upwards.
On the other hand, however, the effect on the bulk is less obvious, since the particles can be
blocked by those situated above (as is the case at small x, with the dense layer appearing), and
need a global rearrangement of other particles in order to be able to move.

We show in figure 15 how the difference �p(j, t + tw) = pr(j, t + tw)− p(j, t + tw) as a
function of j evolves in time after tw. A positive �p(j, t + tw) means that the perturbation has
locally (at height j ) compactified better (giving a local positive contribution to the response
function), while a negative�p(j, t+tw) corresponds to a locally less compact perturbed system
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Figure 12. Density profiles for various values of x, evolving in time (t = 0–106) after a waiting
time tw = 104. The interface is broader for higher x, and the dense layer below the interface is
more pronounced and evolving more slowly for lower x. Comparing with figure 11, we see that
the overall evolution is much slower in all cases.

Figure 13. Response function R(t + tw, tw) versus t , for several values of x and tw . The vertical
scale is the same for the left- and right-hand parts. The response tends to remains positive for a
longer time when either x or tw are higher.

(local negative contribution to the response function). Besides, recalling the definition of the
response function, R(t + tw, tw) = ∑

j �p(j, t + tw)(j + 1)L/Npart , it is important to remark



4416 A Barrat and V Loreto

Figure 14. Response function R(t + tw, tw) versus t , for tw = 104 (left) and tw = 105 (right),
showing that, at fixed tw , the response is an increasing function of x.

that the values of �p(j, t + tw) coming from the interface (large j ) bring a strong contribution
to the response due to the term (j + 1).

At low x (x = 0.1), the bulk is blocked by the thick dense layer just below the interface, as
shown in figure 12. Therefore, the first effect of the perturbation dx is just to decompactify the
interface, which gives rise to a positiveR. However, once the interface is loosened, particles in
the bulk may be allowed to rearrange more freely, and we obtain therefore a better compaction
of the bulk, and a negative R. This phenomenon is shown in figure 15 by the creation of a dip
at heights j just below the interface, with a bump pr(j, t) > p(j, t) just above the interface at
low t , and then by the decrease of this bump with a mass transfer toward the low-j values of the
dip. Let us remark, however, that a negative response, which means a better compaction for
the perturbed replica, does not give any substantial change in the profile: the response to the
perturbation is very heterogeneous, and the bottom part of the sample simply does not feel it.
As tw grows, the interface and the dense layer become more and more compact, and therefore
harder and harder to decompactify. This explains why the response function stays positive for
longer times: the decompaction process takes longer and longer (figure 16).

At higher values of x, the interface becomes smoother, the blocking layer becomes less
dense and the effect of the perturbation on the interface becomes stronger and stronger. At
strong shaking, i.e. large values of x, only the interface contributes to the response function,
which therefore is positive at all times. We see in figure 15 that the effect of the perturbation
is to transfer particles upwards.

In summary, as either tw orx grows, the bulk is more compact, and therefore its contribution
to the response is smaller. The response function tends to become positive due to the
contribution of the interface.

4. Response properties for a cyclic shaking procedure

In this section we consider a shaking procedure defined as a sequence of steps where x is varied
following a cycle or a more general function. A generic procedure is defined giving an initial
and a final value of x, xI and xF , the maximal value of x, xmax, the value of the increments in
x (in our simulations we have always used �x = 0.01) and the time interval �τ the system
spends at each value of x. We have considered values of �τ equal to 102, 103, 104 and 105.
The two main procedures we have considered are defined in the following way:
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Figure 15. Temporal evolution (t = 0–106) of the difference between the density profiles of
the perturbed and unperturbed systems, �p(j, t + tw), after tw = 104 and various values of x.
Comparing this figure with figure 12, one observes that the dips and bumps are located near the
interface, and they are larger for larger x, i.e. for a broader interface.

 
  

Figure 16. Temporal evolution (t = tw to t = tw + 106) of the difference between the density
profiles of the perturbed and unperturbed systems, �p(j, t + tw), for x = 0.1 and two waiting
times: tw = 104 and 106. The larger tw is, the slower the overall processes.

• cycle: an increase from xI = 0.01 to xmax = 0.8, and then decrease to xF ;

• cooling: a simple decrease from xI = xmax (xI = 0.6, 0.7, 0.8, 0.9) to xF .

The final values of x were xF = 0.4, 0.2, 0.1. Once the final value xF of x was reached,
x was kept constant and the measurements of the response function (with a copy evolving at
x + dx), the correlation function and the density profiles were done either without any further
delay, or with an additional waiting time at constant x = xF of 104 or 105 time steps.
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Figure 17. Bulk density versus x during the cycle (a) or cooling (b) procedures, for various values
of �τ and xmax . On (a) for comparison we show the behaviour of two cooling procedures with
�τ = 104 and 105. We see that a simple cooling from xmax is equivalent to a cycle with the same
xmax . In general, higher densities are obtained with slower procedures (larger �τ ) or higher values
of xmax = xI .

We shall see that such procedures, similar to a slow cooling for thermal systems, allow one
to reach large densities, seemingly unreachable at constant x. We note that these procedures are
indeed those used experimentally to efficiently compactify granular systems. The examination
of the density profiles will allow one to gain a deeper insight for the effectiveness of such cycles.

We first plot in figure 17 the evolution of the density during a cycle; the influence of �τ
is clear, and similar to the case of cooling: larger �τ allows one to reach higher densities.
Moreover, the obtained densities are impressively higher than the densities obtained at constant
shaking amplitude.

We also checked that the part of the cycle with growing x has no practical use or influence
on the ‘cooling’ part (see figure 17). Only the maximal value of x is relevant. This seems
reasonable, since structures formed at low x are destroyed by a shaking at larger x. On the
other hand, if �τ is not very large, we have observed that a second cycle can be useful to
obtain still higher densities. Figure 17(b) also shows that higher densities are obtained with
higher values of xmax. This improving trend presents a saturation effect: given a certain value
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of �τ , increasing xmax above 0.9 (we have checked this behaviour up to xmax = 0.99) does
not allow one to increase the asymptotic density further. On the other hand, taking an xmax too
small with a fixed �τ or taking a �τ too small brings the system out of the reversible branch.
In this sense our results fit quite well with the experimental findings [10], where it is stated
that there exists a �∗ that defines an ‘irreversibility point’. Only for �max > �∗ is one always
on the reversible branch. Moreover, a cooling from �max > �∗ achieved with a too small �τ
brings the system out of equilibrium.

It is quite interesting to look at the density profiles at various xF after a cycle (see figure 18).
For xF = 0.1, the bulk is much denser than after any reachable tw at constant x, and the interface
is as steep. (Note, however, that, for �τ too small, there is still a dense layer at the interface
for xF = 0.1.) Moreover, at fixed xI , a larger�τ yields better compaction in the bulk, as does,
at fixed �τ , a larger xI .

The comparison of the profiles at xF = 0.4, 0.2 and 0.1 (at fixed xI and �τ ) shows that
the bulk parts of the profiles are identical: only the interfaces change and they are steeper for
lower x. When x is lowered, the bulk retains its properties while the interface is gradually
sharpened. This means that, in order to better compactify, one has to take into account that
high values of x are effective for the bulk, while low values of x make the interface denser and
steeper. Besides, the larger xI (see figures 18(c) and (d)), the deeper the bulk is affected at the
beginning of the cooling, the more compact the system is at the end of the cooling.

From these observations we deduce that the optimal method to compactify is to begin
with a high xI (but a too high value of xI is not useful, since, as previously mentioned, its
influence saturates), and decrease x as slowly as possible. If xI is higher, then one is allowed
to take a lower value of �τ , thus gaining time in the compaction process. Note moreover that,
for xI = 0.9, the difference between the profiles obtained at �τ = 104 or 105 is very small.
Moreover, if only the bulk has to be compactified, one can stop the process at intermediate
values of x (see figure 18) while, in order to also have a sharp interface, the process has to be
continued down to low values of x. It would be interesting to carry out detailed experimental
tests of these predictions.

After a cycle or a cooling procedure, the mass–mass two-times correlation function
(figure 19) consistently shows an effective age of the system which is much larger than the
real one: for example, for a global real time of 7 × 105 (cooling from xI = 0.8 to 0.1 in steps
of �x = 0.01 with �τ = 104), the effective age is much larger than 106 (largest waiting time
simulated at constant x). This fact is confirmed if we wait an additional tw = 104 or 105 after
the cycle: we observe time-translation invariance, showing that the system is in an equilibrium
or quasi-equilibrium state.

The response function, shown in figure 20, is also independent of tw (for tw = 0, 104, 105),
and is always positive.

Once again, this behaviour can be understood by the analysis of the difference of the
density profiles of the two replicas. Figure 21 shows �p(j, t) for several combinations of xI
and xF . This figure is to be compared with figure 15. In all cases one observes that the change
in xF only modifies the interface, broadening it. The interface in this case is always composed
of a denser layer (bump) lying above a looser layer (dip). The only effect of the perturbation
is a broadening of the interface, even at small xF , thus causing a positive response, because
the bulk has already been efficiently compactified by the cycling procedure.

5. Comparing different procedures: the importance of the history

In this section we try to give a unified picture of the results we have shown so far. Since in a
granular system there is no dynamics without any energy injection, i.e. without any external
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Figure 18. (a) Influence of xF on the density profile after a cycle, for xmax = 0.8, �τ = 104; the
bulk is not affected, but the interface is steeper for smaller xF . (b) At constant xmax = 0.8 and
xF = 0.1, effect of �τ ; the bulk is denser for larger �τ , while the steepness of the interface is
not changed; xF = 0.1 corresponds to a complete cycle, while xcF = 0.1 corresponds to a cooling
from xmax = 0.8. We see that the two procedures are equivalent. (c) influence of xI = xmax , at
constant �τ = 104; the bulk is denser for higher xI , the steepness of the interface is not changed.
(d) The same for �τ = 105.

perturbations, it is highly important to deeply understand the response properties to such
perturbations. One of the most important points to stress is the fact that the response is never
homogeneous. One can never assume that the properties of the system are homogeneously
distributed, not even assuming a coarse-grained point of view. The perturbations drive the
system into an instability mechanism that generates large-scale spatial structures [7, 8]. Let us
discuss the consequences of this phenomenon that has been called self-organized structuring
[7].

First of all, one is not allowed to describe a static packing in terms only of a scalar
quantity such as the density. It is evident how it is possible to construct several different
packings corresponding to the same global average density, each one with completely different
rheological properties (for a concrete example concerning the behaviour of a granular system
subject to shearing see [5]). Recent experiments [17] have made this point clear. Depending
on the properties investigated one is then forced to enlarge the parameter space in order to
give a reasonable description of the system. One important ingredient to take into account
is the history, e.g. the ensemble of dynamical procedures the system has undergone until the
moment when we analyse it. One can then ask where the information about the past history is
encoded and whether it is possible to take into account this history in some suitable coarsed-
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Figure 19. Correlation function after a cycle with xF = 0.1, xmax = 0.8. The longer the cycle,
the older the system looks (i.e. the slower the correlation decays). The curves for �τ = 104 with
tw = 0, 104, 105 are perfectly collapsed, showing time-translation invariance.

Figure 20. Response function after a cycle with xF = 0.1 and 0.8, xmax = 0.8, and a time
tw = 0, 104, 105 at constant x = xF = 0.1. The response is small with large fluctuations, but
definitely positive. We show only the case xF = 0.1, the response being an increasing function of
xF .

grained view. One possibility is to consider the density as a local parameter and describe the
system in terms of some density map. It is precisely in this spirit that in this paper we have
considered, as a first step in this direction, the analysis of the time evolution of the density
profiles†. This corresponds to investigating the properties of the system in the direction of the
imposed external field: the gravity.

The presence of large-scale structures in the system makes the problem of the response
properties far from being trivial. One of the first questions one could ask concerns the best

† A further step in this direction is to consider the real two-dimensional density maps. For this we refer the reader to
[2, 8].



4422 A Barrat and V Loreto

Figure 21. Temporal evolution (from t = 0 to 106) of the difference between the density profiles
of the perturbed and unperturbed systems, �p(j, t), after a cooling from xI = 0.8 to 0.1, 0.2, 0.4,
with �τ = 104 (top left, bottom left and bottom right, respectively) or from xI = 0.9 to xF = 0.1
(with �τ = 104) (top right).

procedure to compactify a given sample. The best strategy refers to the strategy that allows
one to obtain the highest density in a given time. Alternatively, one could consider the best
strategy to reach a given density in the shortest time. Since different parts of the sample (in the
zeroth-order schematization one can consider the bulk and the surface) respond in a different
way to different values of the shaking amplitude x, it is obvious to conclude that the best
strategy will not coincide with a procedure in which one keeps x fixed indefinitely. In this
case, in fact, as we have shown in section 3, the average bulk density at a fixed time is not a
monotonic function of x. It is then quite intuitive to figure out different procedures where x
is a complex function of time. We have shown in section 4 that one of the best procedures is
to consider a cooling process where one starts with a relatively high value of x = xmax and
progressively decrease x with a rate 1/�τ up to a final value xF . The higher either xmax or �τ
are, the larger will be the final asymptotic density. The smaller the value of xF , the larger the
compactified region will be and the sharper the interface.

The rationale behind this definition of the optimal compaction procedure can be understood
as follows. The best way to compactify the system globally is to start from the compaction of
the bottom part of the system. In order to do this one should choose high values of x which
allow one to extend the interface of the system, i.e. the mobilized region, deeper and deeper.
The procedure then proceeds reducing the value of x progressively in order to compactify
sequentially regions at larger heights. It is clear that a small value of x cannot affect the part
of the system already compactified with a larger value of x. That is why in order to also better
compactify the system interface one has to continue the procedure to very small values of x.
In this way one can associate with each particular value of x during the procedure the optimal
compaction of a specific region of the system. On the other hand, it is clear why the compaction
process gives better results for larger �τ . Spending longer on a certain value of x allows one
to better compactify the region corresponding to this value of x. The shaking procedure at
constant x thus cannot be effective because a large x will only be able to compactify the deep



Response properties in a model for granular matter 4423

bulk while a small x will create a high-density layer below the interface (see figure 12) which
for a very long time will stop the bulk compaction.

The presence of large-scale structures also causes many consequences in the behaviour
of the response function as defined in equation (2). From the results presented in the previous
sections, it is evident as, even in a very simplified picture, the sign of the response function
depends on a complex convolution of several contributions: the spatial structures spontaneously
emerging in the system (again at the zeroth order of approximation one can consider the sum
of two coupled contributions coming from the surface and the bulk), the value of the shaking
amplitude and the past history of the system (encoded in the value of tw for a constant shaking
amplitude or, more generally, in the whole definition of the dynamical procedure). It is then
evident how trying to explain the results about the sign of the response function on only the
basis of the shaking amplitude (x) can be fallacious. There does not exist, as suggested in
[9], a transition in x such that the response function is positive above a certain value of x and
negative below this value. In the case of constant shaking amplitude, no matter what the value
of x is, one typically observes a positive response due to the contribution of the system surface,
eventually followed by a negative regime at times that depend on x and tw: the larger are x or
tw, the larger is the time over which one sees a positive response. This is due to the complex
balance between the contributions coming from the surface and those from the bulk. These
features were not considered in [9] where the role of inhomogeneities was neglected and where
only small values of tw were considered. On the other hand, if one looks at the response after
a cyclic procedure, as described in section 4, one realizes that the response is always positive
because in this case only the interface is giving an important contribution.

It is interesting to compare the results obtained for the mass–mass two-times correlation
function using different driving procedures. We have shown in section 3 the presence of ageing
in a system driven with a given constant x. In this case one observes a two-steps relaxation
of the correlation function, typically observed in glassy systems. The second relaxation is
quite well described by a function decaying as log(tw)/ log(t + tw) no matter the value of
x. Similar behaviour has been observed for the mean-square distance between the potential
energies, B(t + tw, tw). On the other hand, the behaviour of the correlation function turns out
to be completely different if the system is subject to a more complicated driving procedure. In
section 4 we have shown that the use of a cyclic or of a cooling procedure brings the system
into a state where time-translation invariance holds, i.e. there is no more ageing. Experiments
analysing the presence or absence of ageing in granular material would certainly be welcome,
and a first step is being taken in [17]. In this case the state reached by the system is such that the
bulk is almost completely decoupled from the system interface, i.e. the bulk density no longer
changes with time. At this stage the dynamics of the system is concentrated on the interface
which is almost in an equilibrium state compatible with the final value of x, xF . The system no
longer ages and the global response (see figure 20) is always positive. For another approach
to the relaxation dynamics of granular media that focuses on the asymptotic stationary state
reached after a very long shaking procedure we refer the reader to [18].

These last observations raise a further question concerning the possibility of associating to
a granular system a unique scalar temperature when the space translation invariance is broken.
In [18] it has been shown that this is indeed possible if the system is in a stationary state. In
this case one can show that it there exists a ‘temperature’-like quantity which is made uniform
everywhere in the system and which is related do the derivative of a suitable free-energy-like
functional. It is evident how one immediately gets into trouble if the system is far from being
homogeneous and if the presence of spatial structures is accompanied by a breakdown of
the time-translation invariance (ageing behaviour). The above discussion about the sign of
the response function represents an example of how data analysis can be misleading. It is
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then clear how in general one cannot describe the response properties of a granular system in
terms of a unique parameter, e.g. the temperature. Considering different values of x or tw or
considering different dynamical procedures, one is simply exploring different non-equilibrium
regions of the phase space that correspond to different spatial inhomogeneities. From the above
discussion it should be clear that a negative value of the response function does not mean that
one can associate a negative effective temperature to the whole system [9] (in the spirit of
the fluctuation–dissipation theorem (FDT) [19]). In this case one simply has that for the
specific values of x and tw explored, the contribution coming from the bulk is important.
This contribution can change depending on the global history (which is encoded in the spatial
structures), on x and tw and thus, unless one is able to introduce more subtle, and local,
indicators, it seems to us quite meaningless and misleading to try to extend to this case the
definition of an effective temperature. From this point of view, unless one is able to define
suitable free-energy-like functionals† taking into account the heterogeneities of the system,
any statement about the validity of the fluctuation–dissipation theorem in such heterogeneous
systems [9], which anyway has to be considered in the limit tw → ∞, seems to us hazardous.

We make a last remark concerning the effect of the boundary conditions on the results
presented so far. Most of our results have been obtained with periodic boundary conditions and
in this case we have checked how globally the results are qualitatively the same by changing the
aspect ratio of the container. In particular, we have considered a wide range of situations from
very tall containers such as those considered in the experiments [10] (M = 200, L = 20, 40,
60) to very wide systems (L = 200,M = 60). In order to mimic the effect of the real container
walls we have also considered some cases with closed boundary conditions. In this case the
walls are rigid and one does not allow overlaps between the particles and the walls. Also in
this case we did not find any substantial difference in the main features of the model. The
structure formation proceeds along the same lines as above and the only remarkable difference
is a further slowing down of the process with respect to the periodic boundary conditions case.

6. Conclusions

In this paper we have investigated the response properties of granular media within the
framework of a recently proposed class of models, the so-called random Tetris model. On
the one hand, we focused our attention on global quantities such as the global density, the
response and the correlation functions. On the other hand, we have monitored some local
quantities that allowed us to investigate the large-scale structures spontaneously emerging in
these systems as a response to the imposed perturbation (driving). The comparison between
global and local quantities allowed us to gain a deeper insight into how granular materials
respond to perturbations and in this perspective of the importance of spatial structures. We have
considered several different perturbation procedures defined in terms of the temporal functions
describing the shaking amplitude (� in the experiments and x with � � 1/ log(1/

√
x) in the

models). In particular, we have analysed the case where one keeps x indefinitely constant and
compared this case with that where x varies as a function of time, x(t). Our main results can
be summarized as follows. In the case of a procedure at constant x the system exhibits ageing
described by a correlation function decaying as log(tw)/ log(t + tw). The response function
exhibits a complex behaviour depending on x and tw. In general, one always observes a positive
response eventually followed, at times increasing with either x or tw, by a negative response.
All these properties can be explained by looking at the heterogeneities arising in the density
profiles.

† It is interesting in this perspective to look at [20].



Response properties in a model for granular matter 4425

The scenario changes completely when considering more complex shaking procedures
where x = x(t). In this case (see section 4 for the details) the system can be found in
an almost stationary state where ageing is no longer present, i.e. the correlation function is
time-translation invariant, and the response function is always positive. Also in this case the
comparison of the results with the analysis of the density profiles allows us to gain a deeper
understanding of the effect of the perturbation on the system. On this basis we are able to
formulate some specific recipes for the best compaction procedure and to comment on some
recent results concerning the validity of the fluctuation–dissipation theorem and the possibility
of a thermodynamic description for these non-thermal systems.

Let us conclude with two points that open possibilities for future work.

(a) Recent experiments [17] have focused on the response, not to a slight change in the forcing,
but rather to a large change, in the spirit of experiments of temperature cycling in spin-
glasses [21]. Work is in progress to reproduce the preliminary experimental results and
draw comparisons with the spin-glasses phenomenology.

(b) We have defined the response function, as in [9], as the response of the system to a change
in the driving force, which is itself considered as an analogue of the temperature. In order
to try to understand whether an extension of the FDT can be thought of, it would probably
be more reasonable to look at the response to a force acting randomly on the particles, and
in a way uncorrelated to the overall driving, in a way similar to that used in a lattice-gas
model [22] or in models of super-cooled liquids [23].

Needless to say, finally, it would be extremely important to have an experimental check
of our predictions to be used as a starting point for further theoretical investigations.
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