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Bubbling and Large-Scale Structures in Avalanche Dynamics
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Using a simple lattice model for granular media, we present a scenario of self-organization that we
term self-organized structuring where the steady state has several unusual features: (1) large-scale spatial
and/or temporal inhomogeneities and (2) the occurrence of a nontrivial peaked distribution of large
events which propagate like “bubbles” and have a well-defined frequency of occurrence. We discuss the
applicability of such a scenario for other models introduced in the framework of self-organized criticality.

PACS numbers: 45.70.Ht, 05.65.+b
One of the major challenges of statistical physics in re-
cent years has been to address the question of the ubiquity
of fractality and scale invariance phenomena in nature [1].
The occurrence of such scaling properties in an extremely
broad (and unrelated) class of problems calls for a con-
cept of extreme generality, beyond the level of proposing
a model suited for any specific phenomenon. A major step
in this direction was taken by Bak, Tang, and Wiesenfeld
[2] who proposed the notion of self-organized critical phe-
nomena (SOC).

The philosophy of SOC is to note that a precise dynam-
ics can be associated with most second order critical phe-
nomena. This corresponds generically to an infinitesimal
external forcing of the system which renders the critical
point an attractor of the dynamics. Qualitative predic-
tions of this scenario are the appearance of power-law
distributions of avalanches, 1�f noise, and more gener-
ally the absence of characteristic length or time scales in
the dynamics. Examples range from sandpiles [2] and
earthquakes [3] to the speciation of living organisms on
Earth [4].

The purpose of the present Letter is to report on some
unusual features of self-organization occurring during
the restructuring of a granular medium [5] under internal
avalanches [6,7]. In particular, we show that the system
spontaneously breaks spatial homogeneity to develop
large-scale structures which trigger (almost) periodic
emission of large avalanches that propagate like solitary
bubbles. As a consequence, the avalanche distribution
exhibits a nontrivial bump for large avalanche sizes.
This mechanism can coexist with small scale scaling in
some cases while controlling it in other cases. We term
this phenomenon self-organized structuring. We show
that this mechanism sheds a new light on phenomena
usually interpreted in the framework of SOC, such as the
celebrated Burridge-Knopoff model [8] for solid friction
and earthquakes [9]. It also calls attention to finite size
effects, which may alter the proper understanding of the
large scale physics at play. The self-organized structuring
presented here may also help to understand the often
debated question of the relevance of the original model of
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SOC, the sandpile model, to real avalanches in granular
media as observed experimentally [10].

We illustrate self-organized structuring using a model
for describing the restructuring of a granular medium
caused by an infinitesimal perturbation (a quasistatic
flow of particles out of a vessel). The description of the
granular medium is based on the “Tetris” model [11], a
toy model designed to account for geometric frustration.
This model has been shown to reproduce a number of
complex features observed experimentally [12,13] in
granular matter, such as the slow dynamics of compaction
under vibration [11], segregation [14], etc.

In the simplest version of the model, particles are rep-
resented by rectangles of uniform size a 3 b which are
distributed on the sites of a square lattice with only two
possible orientations (length of the particle aligned along
one of the principal axes). The size of the rectangle (in
mesh units) is chosen so that a . 0.5 and a 1 b , 1 (all
results quoted below are, however, independent of the ex-
act values of a and b). Geometrical frustration results
from the constraint that two particles should not overlap.
Figure 1 shows a local arrangement of the particles.

FIG. 1. Tetris model: Sketch of one possible local arrange-
ment of particles in the Tetris model without gravity. The sites
of a square lattice can host elongated particles shown as rec-
tangles. The width and length of the particles induce geometri-
cal frustration.
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We now consider a system of size Lx 3 Ly with
periodic boundary conditions along the horizontal direc-
tion (parallel to x) and the principal axis of the square
lattice pointing along the directions �1, 61� (tilted square
lattice). Gravity is along the 2y direction. This system
is filled with Tetris particles by random deposition under
gravity; i.e., particles having one or the other orientation
are dropped from a random position at the top. They then
fall downwards to any of the two nearest neighbor sites
available and so on, executing a directed random walk till
they reach a site from which they cannot fall any farther
due to excluded volume constraints. This defines the
initial state of the system.

The system is then progressively emptied from the
bottom row by removing one single particle at a time.
Once a particle is removed, other particles may fall down,
and induce what we call an “internal avalanche,” i.e., a
restructuring of the medium in the bulk to recover a new
stable configuration. A new particle is then deposited
under gravity at the top. This process conserves the num-
ber of particles in the system, and after a large number
of avalanches, a steady state is established (in which we
make all our measurements). The number of particles
which move after the removing of a single grain is by
definition the avalanche size.

From the definition of the model, it appears to be a good
candidate for exhibiting self-organized criticality. A mini-
mal flow is forced through the system, since the system
is required to relax to a stable configuration before a new
particle is removed from the bottom line. If the system
is very dense, the progressive removal of particles from
the bottom line will decompactify it. If it is too loose,
then avalanches will propagate easily to the top surface and
hence will rapidly increase the density. This competition
of two effects can be expected to lead the system to states
such that large avalanches have a vanishing but nonzero
probability to occur.

Related models have been proposed in the past and
it has been claimed that the avalanche size distribution
is power-law distributed [7]. Indeed, such a statistics
recorded over moderate systems gives rise to a distribution
which can be reasonably fitted by a power law as shown
in Fig. 2 (see Ref. [6] for a more detailed discussion).

The avalanche size distribution exhibits the occurrence
of a well defined bump at the maximum avalanche size
(as also observed in other models). This bump could sim-
ply represent a finite-size effect due to a looser surface
packing. However, we find that the bump is much big-
ger than what is expected from just this argument and it
is not possible to collapse curves obtained with different
system sizes satisfactorily with the usual finite-size scaling
(the shape of the bump changes as the system size changes,
thus disallowing a satisfactory collapse). This is deeply re-
lated to the space-time inhomogeneities self-generated by
the dynamics. Extensive numerical simulations reveal that
the bump displays the following characteristic features: it
1040
10
0

10
1

10
2

10
3

10
4

S

10
−8

10
−6

10
−4

10
−2

10
0

P
(S

)

10
2 Ly

10
2

10
3

S*

S*

FIG. 2. Avalanche distribution: avalanche size distribution ob-
tained in systems of size Lx � 100, and Ly � 100, 200, 300,
400, 500. The distribution shows a scaling region character-
ized by an exponent t � 1.5 and a well-defined bump for large
avalanches. The dotted line is a power-law fit with t � 1.5.
The top of the bump scales with the height of the system as
S� � L1.5

y (see inset).

corresponds to avalanches of a special type whose typical
size s� scales only with the height of the system and is
independent of its width.

s� � ALa
y . (1)

We found a � 1.5 as shown in the inset of Fig. 2.
Since the size of these avalanches is well defined,

we could identify them easily in a time series, and thus
study the distribution of time intervals, T , between such
avalanches. We find that the distribution of T is peaked
signifying the occurrence of big avalanches at a well-
defined frequency. This also implies a screening effect
inhibiting the occurrence of large avalanches close to each
other. Therefore, the system displays memory effects over
large time intervals which is one of the features of what
we call self-structuring.

The rules of the model are time independent, and thus if
a memory effect emerges, it has to be encoded in the struc-
ture of the medium as spatial inhomogeneities. The pecu-
liar scaling of the large avalanches [Eq. (1)] also points to
the same. In order to study this point more quantitatively,
we studied the time average of the local density at every
single site (i.e., the average probability of occupation of a
small region centered around the site). Figure 3 shows a
plot of this time-average density map on a system of size
Lx � 100 and Ly � 200 (averaged over 105 time steps).
We observe clearly on this map alternating channels of
low and high density regions which extend from the bot-
tom to the top of the system. These channels have a fixed
width w independent of Lx (provided the latter is large
enough) and scaling with Ly as L0.5

y [15]. It is important
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FIG. 3. Density map: Plot of the time-averaged density at
every site of the lattice. Alternating low (darker) and high
(brighter) density regions are clearly visible. Most large
avalanches occur in the low-density channels.

to note that these channels were not present initially but
have been progressively carved out by the repeated pas-
sages of avalanches. A qualitative interpretation of this
phenomenon is that avalanches propagate more easily in
less dense regions, but in doing so, they make the density
even lower (note, however, that the density cannot become
lower than the least stable density of the packing). Thus
an instability mechanism results by means of which re-
gions of higher density become progressively quenched in
the medium, remaining stable themselves while transfer-
ring the disturbance immediately to a nearby low density
channel.

These channels become fuzzier close to the bottom line
because the continued removal of particles at the bottom
forces the flux to be uniform along this line. It is also
important to note that the range of variation of the density
is quite moderate (order of 1022), and hence it is necessary
to perform a very long time average to be able to capture
this effect. A snapshot of the system at a single time does
not reveal these channels. This spatial organization is the
second hallmark of self-organized structuring.

We are now in a position to study the spatial and tem-
poral structure of the large avalanches. We tailored a sys-
tem of width Lx � 40 and Ly � 200 so that only a single
channel would appear. We repeated the above procedure
of time averaging the density of particles, but now dur-
ing an avalanche, when it has reached a given height. The
resulting maps are shown in Fig. 4. We now see clearly
that a large avalanche consists of a “bubble” of low den-
sity which propagates along the previously shown channel.
This bubble is initially rather diffuse but becomes mature at
intermediate heights, and preserves its shape and size like a
solitary wave, as it propagates upwards to the free surface.
FIG. 4. Bubbles: Emergent spatial structure in a time average
performed over the avalanches while they are crossing a certain
height h marked in the figure. The front (marked by the arrows)
propagates upwards as a localized low density (appears lighter)
region (the “bubble”) preserving its size and shape.

These results show that large avalanches consist of
bubbles propagating in low density channels at regular
time intervals. The latter is just the time needed to
nucleate such a bubble by the accumulative effect of small
avalanches which deposit voids in the medium. This
nucleation stage is the one where (apparently power-law
distributed) small avalanches are observed. Further the
scaling exponent shown in Eq. (1) can be explained
considering the fact that large avalanches are constrained
by the size of the low-density channels which have a
width vs height scaling as mentioned above.

We have demonstrated that the peculiar statistics of
avalanches in the model discussed above is due to a large-
scale spatial organization and long time memory which
naturally emerge from complex interactions between ele-
ments. This model is, however, just one example of such
a phenomenon (in the same way as the sandpile model of
Ref. [2] was only an example of self-organized criticality).
We now claim that a similar scenario may also be at play
in other models which have often been discussed in the
context of self-organized criticality.

One famous example is the Burridge-Knopoff model
[8], a one-dimensional spring-block model for friction in-
troduced in order to understand the dynamics of earth-
quakes. The model consists of a one-dimensional chain
of blocks connected by springs and driven through addi-
tional soft springs connected to a rigid rod moving at a
vanishingly small velocity. The friction law which governs
the interaction between the blocks and their support is a
1041
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velocity weakening law. This model was studied in detail
by Carlson and Langer [3] who reported that the statistics
of slip events was power-law distributed, a property remi-
niscent of the observed Gutenberg-Richter law in earth-
quake statistics [9], and of self-organized criticality. The
most remarkable aspect of this model is that no noise is
explicitly introduced, and a nonuniform motion is only
due to an intrinsic instability of the velocity weakening
friction law.

In spite of the fact that this point did not raise much
attention, the statistical distribution of the length of slip
events displays an initial part (reasonably described by a
power-law distribution) along with a significant bump at
sizes equal to the system size. In fact, in terms of en-
ergy released during a slip, it is the latter which contribute
the most (which is somewhat in conflict with geophysi-
cal data). A detailed numerical investigation [16] allowed
one of us to get some information about the structure
of these large slip events. They can be shown to con-
sist of localized pulses propagating through the system
and occurring at a well-defined time interval. Driving the
system at a nonvanishing speed [17] gives rise to simi-
lar pulses occurring at fixed time intervals: an organized
state where noise disappears. This point indeed shows that
the time invariance of this model is broken, and thus that
the model belongs to the class of self-organized structur-
ing models.

After the initial proposal of Bak et al. [2] who exem-
plified the notion of SOC by a sandpile model, numerous
attempts have been made to measure power law distribu-
tion of avalanches in real granular media. It was soon real-
ized that for large system sizes, the statistics of avalanches
was no longer a power law but consisted rather of a peaked
distribution of large avalanches, plus a tail for smaller ones.
This form was interpreted as resulting from an hysteresis
in the repose angle of granular media rather than a single
critical slope as would be predicted by a SOC scenario.
We can understand this effect from the point of view of
self-structuring, as the consequence of a slow nucleation
effect of avalanches. From simple conservation laws this
induces a hysteresis in the angle of repose.

Needless to say, our objective is not to deny the rele-
vance and importance of self-organized criticality. On the
contrary, the number of examples where genuine SOC has
been demonstrated (e.g., the Abelian sandpile model [18])
speak for themselves. The point we wish to stress is that
in some cases, large scale instabilities may modulate the
response of the system at a fixed frequency, giving rise to a
statistics of events or avalanches which is not purely scale
invariant but rather displays a characteristic size (which de-
pends on the structures spontaneously arising in the steady
state and thus not trivially related to the system size), a
feature we termed “self-organized structuring.” Moreover,
the breaking down of the translational time invariance of
1042
the system can be accompanied by a corresponding spatial
structure which emerges from the dynamics of the system.
In contrast, usual SOC is expected to be observed in similar
conditions for stable systems, where no long-range struc-
tures survive, either in space or time. We also note that
the stability or instability of these large structures might
be difficult to analyze a priori, and thus establishing the
self-organized critical or self-organized structuring charac-
ter of the system may require large scale numerical studies
of these models, in order to distinguish these structures
from the large amplitude small-scale background noise in-
herent to these models.
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