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Bât. 210, Université de Paris-Sud - 91405 Orsay Cedex, France
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Abstract. – Motivated by recent experiments on the approach to jamming of a weakly forced
granular medium using an immersed torsion oscillator (Nature, 413 (2001) 407), we propose a
simple model which relates the microscopic dynamics to macroscopic rearrangements and ac-
counts for the following experimental facts: 1) the control parameter is the spatial amplitude of
the perturbation and not its reduced peak acceleration; 2) a Vogel-Fulcher-Tammann–like form
for the relaxation time. The model draws a parallel between macroscopic rearrangements in
the system and extreme events whose probability of occurrence (and thus the typical relaxation
time) is estimated using extreme-value statistics. The range of validity of this description in
terms of the control parameter is discussed as well as the existence of other regimes.

Introduction. – Granular-matter physics [1,2] is a very interesting laboratory for address-
ing open problems of non-equilibrium statistical mechanics, such as the nature of slow glassy
dynamics [3] and jamming [4], the mechanisms of pattern formation, the physics of avalanche
phenomena. In this context, recent experimental results have shown [5, 6] the intriguing
analogy between the way a perturbed granular medium progresses towards complete rest by
decreasing the amplitude of external taps, and the vitrification of glass-forming materials.
This slow glass-like granular behavior raises one of the main questions in the framework

of granular matter, namely the link between the macroscopic response to an external per-
turbation and the microscopic (or mesoscopic) processes occurring at the scale of the single
particle. Recently, it has been conjectured [7] that the occurrence probability of rare events
might explain the origin of the slow dynamic behavior of granular matter. Such rare events
arise when the largest externally induced vibration in the granular medium overcomes some
suitable threshold, triggering in this way a macroscopic “fracture” of the granular solid, that
is a grain rearrangement. In this paper we further develop this idea and provide a model close
c© EDP Sciences



G. D’Anna et al.: Extreme events-driven glassy behaviour in granular media 61

10-4 10-3 10-2 10-1

(m1/2)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

τ x
 (

s)

70 Hz
113 Hz
180 Hz
VFT

1/√Γ

10-9

10-8

10-7

10-6

10-5

D

(b)

0 5 10

ϒ

Fig. 1 – (a) Typical time series θ(t) obtained at Γ = 0.056 and fs = 113 Hz. Inset: sketch of
the immersed torsion oscillator. (b) Relaxation time τx vs. Υ for various forcing frequencies fs.
Dashed line: VFT fit τx = A exp[B/(Υ − Υ0)p] with A = 6.5 × 10−4, B = 0.0072, p = 0.95,
Υ0 = 1.37 × 10−4 m1/2. Inset: diffusion coefficient (arbitrary units) D vs. 1/

√
Γ, obtained directly

from time series such as in (a).

to the intuitive picture given by experiments and which may be of interest for similar systems
such as glasses or disordered systems [8–10].

Experimental results. – We first recall the basic experimental results, and fig. 1, which is
in part adapted from previously published work [5], is used to introduce the method and sum-
marize the basic data. The dynamic behavior of the perturbed granular medium is deduced
from noise measurements. The granular noise, denoted |θ(f)|2, is obtained by detecting the
irregular motion of a torsion oscillator (fig. 1a), deeply immersed into the perturbed granular
material, and taking the squared amplitude of the Fourier transform of the observed data
series. The granular medium is perturbed by shaking the container by well-isolated taps, or
by continuous vibrations. An accelerometer on the container measures the intensity of the
perturbation, quantified by the reduced peak acceleration Γ = asω

2
s /g, written in terms of

the amplitude as and the frequency fs = ωs/2π of a sinusoidal shaking, and the acceleration
of gravity g. Below the ideal fluidization limit at Γf = 1, and at low frequency (below the
natural frequency of the oscillator), we observe 1/f2 noise spectra.
This low-frequency noise is the structural, or configurational noise. This is easily under-

stood considering tapping experiments, where after each tap the granular system completely
stops in a static configuration, which in turn determines an angular position of the immersed
oscillator. A series of such taps drives the granular medium from one static (or jammed)
configuration to another, and the corresponding series of static (or “low-frequency”) angular
positions θ(t) of the immersed oscillator probes this process, which displays 1/f2 noise. Before
going further, we emphasize some experimental aspects: first, when continuous vibrations are
used, the low-frequency spectrum is the same as the one seen in tapping experiments [5]. This
gives us a very rapid and efficient method to measure the noise, and most of the data are
obtained in this way. Second, our measurements are performed after the sample has been pre-
pared in a reproducible state. In particular, after having been poured into the container, the
granular medium is subject to very strong vibrations (large Γ) whose intensity is progressively
reduced until reaching the value of Γ, where the measurements are performed. This discards
the strong compaction effects occurring during the first run on a loose granular system, should
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we have initiated the measurement directly at a low Γ after pouring. The procedure in fact
brings the system directly into an almost stationary state which should correspond to the
reversible curve described in [3].
In order to have a deeper insight into the fluctuations of the rotation angles, we have

directly used the time series of θ(t) (one example is shown in fig. 1a) to compute the structure
factor S(τ) = 〈(θ(t + τ) − θ(t))2〉 for different values of Γ. The obtained linear dependence
with τ allows us to determine a diffusion coefficient D(Γ), which features an exp[−B′/

√
Γ]

dependence at low Γ, as displayed in the inset of fig. 1b. Moreover, the 1/f2 noise resulting
from the time series also gives important hints on the nature of the slow glass-like granular
dynamics: since |θ(f)|2 is proportional to a diffusion coefficient, its inverse at a given frequency
can be considered to be proportional to an intrinsic configurational relaxation time, τx, i.e.,
1/|θ(f)|2 = Cτx. In order to obtain the constant of proportionality C, the noise data are
compared with susceptibility measurements [7], since a peak in the loss factor (i.e. a peak
in the tangent of the argument of the complex susceptibility) arises when ωpτx = 1, where
fp = ωp/2π is the frequency at which the susceptibility is measured. This gives approximately
C = 2π1500mrad−2s.
The following important points can be deduced from the experimental measurements.

First, previous experiments [6] provide evidence for a parameter of the form Υ = b
√
Γ/ωs =

b
√

as/g, with b a constant. This key control parameter determines the “level” of the low-
frequency noise, as shown in [6]. In other words, whatever amplitude as and frequency fs of
the perturbation is, provided Γ < 1, the noise only depends on Υ. (In fig. 1b we set b = g1/2

and the control parameter is Υ =
√

as. Notice that, since we have not changed g, experiments
only prove that the control parameter is proportional to the square root of the perturbation
amplitude, i.e., Υ ∝ √

as.) Another indication for a control parameter like Υ comes from the
direct measurement of the diffusion coefficient (inset of fig. 1b) which shows an exp[−B′/Υ]
form, in agreement with the measurements of τx. The physical signification of this empirical
control parameter will be discussed in detail below.
Summarizing, from noise measurements as a function of Γ at different shaking frequencies

fs, and having determined the relationship between |θ(f)|2 and τx from susceptibility measure-
ments, we obtain the curves shown in fig. 1b, namely a plot of the configurational relaxation
time τx as a function of the control parameter Υ. Secondly, the data for small Υ in fig. 1b have
been fitted with the expression τx = A exp[B/(Υ−Υ0)p], which gives in particular p = 0.95.
Since the observed exponent is close to p = 1, we assume from now on that the configuration
relaxation time is well described by the standard Vogel-Fulcher-Tammann (VFT) expression

τx � A exp[B/(Υ−Υ0)]. (1)

In this VFT form, Υ is the empirical control parameter playing the role of temperature (which
does not mean that it is a temperature!), and Υ0 is the value of the control parameter where
the configuration relaxation time scale diverges(1).

Model. – Before going further, it is important to identify the granular regime we are
addressing. It is evident from fig. 1b that Υ appears as the relevant control parameter only for
external shaking with Γ < 1. In fact, the scaling described by eq. (1) ceases to hold for values
of Υ which correspond, for each fs, to values of Γ around unity. This is an important point

(1)Actually, the data for τx can also be fitted by the simple exponential form τx � A exp[B/Υ], as well as by

the form A exp[B/(
√

Υ2 − Υ2
0)], at least for Υ � Υ0; we shall come back to this point on the discussion of

the model. (An experimental estimate of Υ0 gives 1.37 × 10−4 m1/2, which corresponds to a displacement of
about 19 nm. Notice that Υ0 is very sensitive to the exponent p, and should be considered only as an order of
magnitude.)
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and the model is supposed to be valid for Γ ≤ 1. In this regime no fluidization occurs and the
granular medium can be considered in a quasi-solid phase, where geometric frustration plays
a major role. During a periodic vertical shaking of amplitude as and frequency fs, with Γ < 1,
the granular medium moves as a whole, following the movements imposed to the container.
At the same time, the torsion oscillator immersed in the medium is fixed in the laboratory
reference frame, i.e., it moves with respect to the medium with the same periodicity imposed
by the shaking. It turns out that it is easier to explain what happens during the shaking
if one inverts the point of view and considers the granular medium as globally immobile in
the laboratory reference frame, while the torsion oscillator is subject to a vertical oscillatory
forcing. Thus, at each period the torsion oscillator penetrates the granular medium for a
length as and returns to the original position. In other words, one externally imposes a given
displacement (or deformation) to the medium, while the stress exerted is not fixed.
What happens at the microscopic level? During the excursion of length as, the torsion

oscillator will try to find its way inside the granular medium by advancing and possibly
rotating of a certain angle in order to adapt to the reaction of the granular system. We have
the following picture. For small excursions as (to be defined below) the medium stays in
a given static (or jammed) configuration, and it is deformed either elastically or plastically.
Eventually, the medium fractures, and jumps to another jammed configuration. Our immersed
oscillator detects essentially each fracture event, and a time series represents a sequence of
different jammed configurations. In contrast to an ordinary solid, for which a fracture is a
unique fatal event, the granular solid is able to re-establish itself in a new jammed configuration
and to support successive fractures.
Thus, we assume that the penetration/deformation process involves three distinct regimes:

1) An elastic regime for excursions as below a limit denoted a0
s . For as < a0

s the system is
able to absorb the imposed displacement elastically. (The experimental value of a0

s is material
dependent and, as discussed below, we identify it with the displacement for which we observe
the divergence at Υ0, i.e., a0

s ≈ 10−8m.) In this regime the granular system responds as
an elastic medium and the torsion oscillator returns to the original angular position at the
end of the cycle. 2) A plastic regime, in which the imposed displacement is absorbed by the
granular system by reorganizing the internal stress network, inducing irreversible rotations of
the angular oscillator position, but without leaving the actual jammed configuration. 3) A
fracture process in which the system is unable to further absorb the imposed displacement,
and a macroscopic grain rearrangement (or internal avalanche) is required, resulting in a large
jump of the torsion angle θ(t).
We now formalize this three-regime process. In the plastic phase, the torsion angle under-

goes sudden (but very small) changes due to the reorganization of the internal stress distribu-
tion. In a first approximation, one can imagine that the variations of the torsion angle could
be described by a discrete random walk, i.e. one has a Gaussian distribution for the torsion
angles whose variance has to be computed by estimating the number of random walk steps the
torsion oscillator undergoes for an excursion of length as. We shall see in the following how
the hypothesis of a Gaussian distribution, partially supported by the results for the diffusion
coefficient, is not crucial and can be relaxed without changing the main results.
Since the relaxation law (1) implies that below a certain value of as the relaxation time

is always infinite, we can deduce the existence of an elastic threshold for as, i.e. a0
s . This

means that for as < a0
s no permanent deformation is produced in the system and the typical

time for a macroscopic rearrangement is infinite, hence the existence of an elastic phase. For
as > a0

s the reaction of the medium on the torsion oscillator induces irreversible rotations,
hence the existence of a plastic phase. For these reasons a0

s can be considered as the length
of the elementary step of the random walk.
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Now, provided that as > a0
s , the number of random walk steps n performed by the torsion

oscillator for a displacement as will be proportional to as − a0
s . If the elementary angle of

rotation at each step is of the order of θel we expect a Gaussian distribution for the rotation
angles with variance σ ∝ θel

√
n ∝ θel

√
(as − a0

s )/a0
s . This is a first indication that a parameter

proportional to
√

as ∝ Υ (or
√
(as − a0

s )/a0
s ∝

√
Υ2 −Υ2

0) could play the role of a control
parameter, i.e. a role similar to a temperature in the sense that it determines the variance of
the stress fluctuations induced indirectly by the advancing torsion oscillator.
Let us now try to explain the VFT behavior of the relaxation time. This time represents the

typical time for the system to undergo a macroscopic grain rearrangement. The question can
be then rephrased as follows: what is the probability that the torsion oscillator, in its angular
random walk with variance proportional to θel

√
(as − a0

s )/a0
s , will produce a macroscopic

configurational change such that the system jumps to another static (jammed) configuration?
Our hypothesis is that the fracture event takes places as an extreme event whose probability
can be computed in the framework of the extreme order statistics [11]. Fluctuations in the
torsion angle correspond to a stress redistribution and one expects larger angles to produce
larger compression of the grain-chains involved. It is natural to expect that there will be
some threshold value θf for the fluctuating torsion angle above which the contact network will
break and yield to a macroscopic rearrangement leading to a large jump for θ(t). We have
then to look for the probability that, among the fluctuations of the torsion angle excited at
each shaking (i.e., at each penetration over as), the largest fluctuation will be larger than a
given threshold θf .
We define Zn = max(X1,X2, . . . , Xn), with Xi = θi/σ. We search the probability that

Pr[Zn > xf ] ≡ Sn(xf), where xf = θf/σ is the normalized angular threshold. The (cumulative)
probability distribution is Pr[Zn ≤ x] ≡ Hn(x), and Sn(x) = 1 − Hn(x). According to
standard textbooks, for a normal parent probability density distribution, using the sequences
given by cn =

√
2 lnn − (ln lnn + ln 4π)/(2

√
2 lnn) and dn = 1/

√
2 lnn [11], the probability

distribution Hn(cn + dnx) tends, as n increases, to a Gumbel probability distribution [12],
i.e. limn→∞ Hn(cn + dnx) = exp[− exp[−x]]. For large n, the probability Sn(xf) is given by
Sn(xf) = 1− exp[− exp[−(xf − cn)/dn]].
For (xf −cn)/dn � 1, the probability Sn(xf) can be approximated by an exponential func-

tion, i.e., Sn(xf) ≈ exp[−(xf − cn)/dn]. Using the expressions for cn and dn given above, the
above condition is verified if n2 exp[−θf

σ

√
2 lnn]� √

4π lnn. In our case σ ∝ θel

√
(as − a0

s )/a0
s

and the approximation is correct if θf/θel �
√
2n lnn−

√
n ln

√
4π ln n√

2 ln n
, which is a reasonable as-

sumption given the experimental values of the parameters. Using the previous approximation
the probability for a rare fracture event (corresponding to a configurational rearrangement) is

Sn(θf/σ) ≈ n2

√
4π lnn

exp
[−θf

σ

√
2 lnn

]
. (2)

We expect that θf will depend on the specific tribological properties of the grains, as well as
on some geometrical properties of the system, such as the grain shape and size distribution.
Thus, for a given granular system (i.e., fixed n and θf) the fracture probability is determined
only by σ. The inverse of the probability Sn(θf/σ) determines the characteristic time for grain
configuration rearrangements, i.e. the characteristic time of the macroscopic dynamics. One
has then Sn ∝ τ−1

x . Recalling that σ is directly related to the empirical control parameter
Υ ∝ √

as, one finds

τx � A exp
[
B/

√
Υ2 −Υ2

0

]
, (3)
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which, given the extremely small experimental value of a0
s , is indistinguishable from (1) and

also very close to an Arrhenius behavior. As already stressed, the experimental data do not
allow to definitely discriminate between the three behaviors.
It is important to notice that in the present model the Gaussian distribution of the torsion

angle in the plastic regime follows from the random-walk analysis. However, the precise form
of the torsion angle distribution is irrelevant as long as it decays faster than any power law
(see [10]). For instance for stretched exponential distributions as exp[−α|θ|β ], one would
obtain again a Gumbel distribution for the largest fluctuation where the parameters cn and
dn would be given, to logarithmic accuracy, by cn � (2 lnn/α)1/β and dn = 1/cn. This leads
to the conclusion that, independently of the precise form of the torsion angle distribution (i.e.
under very mild assumptions on it) one gets the same result for the relaxation time provided
the variance of the distribution is proportional to

√
(as − a0

s )/a0
s .

Conclusions. – We have proposed a microscopic model which is able to explain some
experimental results for the relaxation dynamics of a granular medium described [5, 6]. The
crucial hypothesis is that at low Γ (Γ < Γf , where Γf � 1 in our experiments) the macroscopic
dynamics is controlled by extreme events of the stress fluctuations in the system: if the
variance of these stress fluctuations, driven by the imposed penetration of the oscillator over
the distance as, is proportional to

√
(as − a0

s )/a0
s (as it turns out if the microscopic torsion

angle fluctuations are Gaussian), then a macroscopic change of θ(t) can occur only if such
microscopic fluctuations overcome a threshold, i.e. if an extreme fracture event takes place.
These simple ingredients immediately lead to an activated-like, VFT-like character of the
relaxation time. The deviation of the relaxation behaviour from the Arrhenius law is explained
by the existence of an elastic threshold a0

s , which is material dependent: for as < a0
s the system

can absorb the perturbation without any rearrangement.
For Γ > Γf the situation is quite different: at each cycle most of the induced fluctuations

in the system are large enough for a macroscopic rearrangement to occur, and the dynamics
is not controlled any more by rare events. In this fluid-like phase, structural (configurational)
changes are not rare events. Recently, Philippe and Bideau have identified, using a geometry
very similar to the one of our experiments, a threshold value of the order of 1.2 above which
the system is able to reach a stationary state with a density relaxation ruled by a stretched
exponential law [13]. From this point of view, we speculate that the threshold value for flu-
idization could also mark the boundary between a glassy region (low Γ), where the relaxation
is driven by extreme isolated events, and a quasi-liquid region (high Γ), where the system is
able to reach a stationary state. It is important to stress that the threshold value for fluidiza-
tion can depend on the geometry of the container. In particular, we expect the threshold value
to increase a lot for highly confined geometries where the effect of the boundaries is strong.
This could be the case for the Chicago experiments [3], where a narrow and tall container is
used. If the effective threshold for this experiment was large (for instance Γf � 3–4) this could
explain why they observed a very slow relaxation even for values of Γ well above 1.
The present work represents only a first step in the direction of a better link between the

microscopic dynamics of granular media and the macroscopic response to an external per-
turbation. From this point of view, various experiments can be thought of to clarify several
points: the actual functional form for the relaxation time as well as the dependence of the elas-
tic threshold a0

s on the material, the dependence of the control parameter on the acceleration
of gravity g, the exploration of the fluid-like regime (Γ > Γf). Finally the experimental setup
described in this paper could allow the measurement of some thermodynamical properties of
granular media: in particular the existence of effective temperatures could be investigated
by a suitable combination of susceptibility and noise measurements, in the spirit of recent
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experiments on laponite [14]. Such experiments would open a way towards a comparison with
recent theoretical predictions on a thermodynamical approach to granular matter [15,16].
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