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Abstract

Motivated by the problem of the definition of a distance between two sequences of characters, we investigate the so-called
learning process of a typical sequential data compression schemes. We focus on the problem of how a compression algorithm
optimizes its features at the interface between two different sequencesA andB while zipping the sequenceA+ B obtained
by simply appendingB afterA. We show the existence of a scaling function (the “learning function”) which rules the way in
which the compression algorithm learns a sequenceB after having compressed a sequenceA. In particular it turns out that
there exists a cross-over length for the sequenceB, which depends on the relative entropy betweenA andB, below which
the compression algorithm does not learn the sequenceB (measuring in this way the cross-entropy betweenA andB) and
above which it starts learningB, i.e. optimizing the compression using the specific features ofB. We check the scaling on
three main classes of systems: Bernoulli schemes, Markovian sequences and the symbolic dynamic generated by a nontrivial
chaotic system (the Lozi map). As a last application of the method we present the results of a recognition experiment, namely
recognize which dynamical systems produced a given time sequence. We finally point out the potentiality of these results for
segmentation purposes, i.e. the identification of homogeneous sub-sequences in heterogeneous sequences (with applications
in various fields from genetic to time-series analysis).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The modern approach to time-series analysis based on the theory of dynamical systems and information theory
(IT) has represented a major advance in the description and comprehension of a wide range of phenomena, from
geophysics to industrial processes[1,2]. Time series represent a particular example of the wider category of strings
of characters which also includes as further examples texts or genetic sequences (DNA, proteins). When analyzing
a string of characters the main question is to extract the information it brings. For example, in a DNA sequence this
would correspond to the identification of the sub-sequences codifying the genes and their specific functions. On the
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other hand for a written text one could be interested in recognizing the language in which the text is written, the
subject treated or its author. For time series one could be interested in the extraction of specific features or trends[3].

In the spirit of having specific tools for the measurements of the amount of information brought by a sequence, it
is rather natural to approach the problem from a very interesting point of view: that of IT[4,5]. Born in the context
of electric communications, IT theory has acquired, since the seminal paper of Shannon[4], a leading role in many
other fields as computer science, cryptography, biology and physics[5]. In this context the word information acquires
a very precise meaning, namely that of the entropy of the string, a measure of thesurprise the source emitting the
sequences can reserve to us.

It is important to stress that IT deals with ensembles of sequences emitted by an ergodic source, while one is
typically forced to treat a single sequence. In this spirit an appropriate concept is that of algorithmic complexity
(AC) [6–9]. The AC (sometimes called also Kolmogorov complexity) of a string of characters is given by the length
(in bits) of the smallest program which produces as output the string. A string is said to be complex if its complexity
is proportional to its length. This definition is really abstract, in particular it is impossible, even in principle, to find
such a program[10]. Since this definition tells nothing about the time the best program should take to reproduce the
sequence, one can never be sure that somewhere else there does not exist another shorter program that will eventually
produce the string as output in a larger (eventually infinite) time; this impossibility is related to the Turing’s theorem
on the halting problem and to the Gödel’s theorem[10].

Despite the impossibility to compute the AC of a sequence, one has to recall that there are algorithms explicitly
conceived to give a good approximation to the AC[10]. Since the AC of a string fixes the minimum number of bits
one should use to reproduce it (optimal coding), it is intuitive that a typical zipper, besides trying to reduce the space
occupied on a memory storage device, can be considered as an entropy meter. The better will be the compression
algorithm, the closer will be the length of the zipped file to the optimal coding limit and the better will be the
estimate of the AC provided by the zipper.

It is well known that compression algorithms represent a powerful tool for the estimation of the AC or more
sophisticated measures of complexity[11–13]and several applications have been drawn in several fields[14] from
dynamical systems theory (the connections between IT and dynamical systems theory are very strong and go back
all the way to the work of Kolmogorov and Sinai; for a recent overview see[15–17]) to linguistics (an incomplete
list would include[18–25]) and genetics (see[26–28], and references therein).

Some of us have recently proposed a method[25] for context recognition and context classification of strings of
characters or other equivalent coded information. The remoteness between two sequencesA andB was estimated
by zipping a sequenceA + B obtained by appending the sequenceB after the sequenceA and using thegzip
compressor[29] (whose core is provided by the Lempel–Ziv 77 (LZ77) algorithm[30]). This idea is used for
authorship attribution and, defining a suitable distance between sequences, for languages phylogenesis.

The idea of appending two files and zip the resulting file in order to measure the remoteness between them had
been previously proposed by Loewenstern et al.[28] (usingzdiff routines) who applied it to the analysis of DNA
sequences, and by Khmelev and coworkers[23] who applied the method to authorship attribution. In particular
here the method is extensively tested using many different zippers, includinggzip. Though the idea is the same the
practical implementation differs from the one proposed in[25].

In this paper we extend the analysis of[25] by considering more in detail the features of data compression
algorithms when applied to generic strings of characters. The specific question we raise here is how LZ77-like
compression algorithms behave at the interface between two different files. More specifically we shall focus on
the process by which a typical zipperlearns the sequence it is processing and how it uses previous information
acquired while zipping a given file to zip a second different file. We point out in particular the existence of a
scaling function which rules the way in which the compression algorithm learns the sequenceB after having zipped
sequenceA. These kind of problems are closely related to the so-called segmentation problem, i.e. the identification
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of homogeneous sub-sequences in heterogeneous sequences (with applications in various fields from genetic to
time-series analysis).

Since in this case we are interested in exploring the features of the compression algorithms we shall use as
benchmark systems time sequences issued by dynamical systems of increasing complexity. In particular the scaling
function is checked numerically for three main classes of systems: Bernoulli schemes, Markovian sequences and the
nontrivial symbolic dynamic generated by the so-called Lozi map. As a last application of the method we present the
results of a recognition experiment, namely recognize which dynamical systems produced a given time sequence.

The outline of the paper is as follows. InSection 2we recall some basic definitions.Section 3is devoted to the
discussion of data compression techniques as well as to recall the definition of relative entropy and the Ziv and
Merhav algorithm[11] for its measure. InSection 4we study what happens when applying the LZ77[30] algorithm
to a sequence obtained appending two different sequences. InSection 5we analyze numerically the results of
Section 4. In Section 6we perform a recognition experiment on sequences generated by the Lozi map. Finally in
Section 7we draw the conclusions and discuss possible fields of application for these techniques.

2. Basic concepts

Originally IT was introduced by Shannon[4] in the practical context of electric communications. The powerful
concepts and techniques of IT allow for a systematic study of sources emitting sequences of discrete symbols (e.g.
binary digit sequences) and in the last decades there have been shown the deep relations between IT and other fields
as computer science, cryptography, biology and chaotic systems[5,17].

Consider a symbolic sequenceσ1σ2 · · · , whereσt is the symbol emitted at timet and eachσt can assume one of
m different values. Assuming that the sequence is stationary we introduce theN-block entropy:

HN = −
∑
{CN }

p(CN) ln p(CN), (1)

wherep(CN) is the probability of theN-wordCN = (σtσt+1 · · · σt+n−1), and ln = loge. The differential entropies:

hN = HN+1 −HN (2)

have a rather obvious meaning;hN is the average information supplied by the(N + 1)th symbol, provided theN
previous ones are known. Noting that the knowledge of a longer past history cannot increase the uncertainty on the
next outcome, one has thathN cannot increase withN, i.e.hN+1 ≤ hN . Now we are ready to introduce the Shannon
entropy for an ergodic stationary process:

h = lim
N→∞

hN = lim
N→∞

HN

N
. (3)

It is easy to see that for akth order Markov process, i.e. such that the conditional probability to have a given symbol
only depends on the lastk symbols,p(σt|σt−1σt−2, . . . ) = p(σt|σt−1σt−2, . . . , σt−k), thenhN = h for N ≥ k.

The Shannon entropyh measures the average amount of information per symbol and it is an estimate of the
“surprise” the source emitting the sequence reserves to us. The fact is remarkable that, under rather natural assump-
tions, the entropyHN apart from a multiplicative factor, is the unique quantity which characterizes the “surprise”
of theN-words[31]. Let us try to explain in which sense entropy can be considered as a measure of a surprise.
Suppose that the surprise one feels upon learning that an event E has occurred depends only on the probability of
E. If the event occurs with probability 1 (sure!) our surprise in its occurring will be zero. On the other hand if the
probability of occurrence of the event E is quite small our surprise will be proportionally large. For a single event
occurring with probabilityp the surprise is proportional to− ln p. Let us consider now a random variableX, which
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can takeN possible valuesx1, . . . , xN with probabilitiesp1, . . . , pN , the expected amount of surprise we shall
receive upon learning the value ofX is given precisely by the entropy of the source emitting the random variable
X, i.e.− ∑

pi ln pi.
A theorem, due to Shannon and McMillan[4,31], expresses in a precise way howh quantifies the “complexity”

of the source: ifN is large enough, the set ofN-words{CN} can be partitioned in two classes,Ω1(N) andΩ2(N)

such that all the wordsCN ∈ Ω1(N) have probabilityp(CN) ∼ e−hN and∑
CN∈Ω1(N)

p(CN)→ 1 for N → ∞, (4a)

∑
CN∈Ω2(N)

p(CN)→ 0 for N → ∞. (4b)

An important implication of the theorem is that the number of typical sequencesNeff(N) (those inΩ1(N)) effectively
observable is

Neff(N) ∼ ehN. (5)

Note that in nontrivial cases, in whichh < ln m,Neff(N)� mN ,mN being the total number of possibleN-words.
Let us remark that the Shannon–McMillan theorem for processes without memory is nothing but the law of large
numbers. WritingEq. (5)in the formHN ∼ ln Neff one can understand its relation with the Boltzmann equation in
statistical thermodynamicsS ∝ ln W ,W being the number of possible microscopic states andS the thermodynamic
entropy.

An important result is the relation between the maximum compression rate of a sequence(σ1σ2 · · · ) expressed in
an alphabet withm symbols, andh. If the lengthT of the sequence is large enough, then it is not possible to compress
it into another sequence (with an alphabet withM symbols) whose size is smaller thanTh/ ln M. Therefore, noting
that the number of bits needed for a symbol in an alphabet withM symbol is lnM, one has that the maximum
allowed compression rate ish/ ln M. Perhaps the simplest way to compress, at least at a conceptual level, is via the
Shannon–Fano procedure which is able to reach asymptotically the maximum allowed compression rate[32]. Also
the popular Lempel–Ziv coding[30] (see in the following for a short discussion) gives the same asymptotic results.

We stress the fact thath is an asymptotic quantity which gives the behavior ofHN (or equivalentlyhN ) at largeN,
i.e.h � HN/N forN � 1. On the other hand the features ofHN (orhN ) for moderateN are rather important in all
nontrivial processes (i.e. with memory). An important quantity introduced to measure these effects and characterize
the properties of a sequence from the behavior ofHN , is the so-calledexcess entropy [33] or effective measure
complexity [34] (for a recent overview and other references where these concepts have been discussed see[35]).
Let us introduce

δhN = hN−1 − hN (6)

and the excess entropy (or effective measure complexity)C as

C =
∞∑
N=1

NδhN. (7)

It is not difficult to realize that, for largeN, one has

HN � C + hN. (8)

In trivial processes (e.g. Bernoulli schemes),C = 0, on the other handC can be nonzero in cases with zeroh (e.g.
periodic sequences). Particularly interesting are the cases whereh is positive andC is not negligible; nontrivial



96 A. Puglisi et al. / Physica D 180 (2003) 92–107

examples are given by dynamical systems producing sequences with memory and forbidden words, such as the Lozi
map, which is discussed inSection 5.3.

3. Data compression and complexity

As already mentioned there exists an important relation between the maximum compression rate achievable for a
given sequence and its AC. We have as well stressed that AC, at variance with IT, does not deal with an ensemble of
sequences, but with a single sequence. On the other hand there is a rather important relation between the Kolmogorov
complexity (or AC)KN(WN) of aN-wordWN andHN :

1

N
〈KN〉 = 1

N

∑
WN

KN(WN)P(WN) →
N→∞

h

ln 2
, (9)

whereKN is the binary length of the shorter program needed to specify theN-wordWN .
In Section 1we have already outlined that, despite the impossibility to compute the AC of a sequence, data

compression techniques represent effective tools for an estimation of AC or other measures of complexity. In
particular any such algorithm provides with an upper bound of the real AC.

A great improvement in the field of data compression has been represented by the Lempel and Ziv algorithm
(LZ77)[30] (used, for instance, bygzip andzip). It is interesting to briefly recall how it works. Letx = x1, . . . , xN,be
the sequence to be zipped. The LZ77 algorithm proceeds sequentially along the sequence. Let us suppose that the first
n characters have been codified. Then the zipper looks for the largest integerm such that the stringxn+1, . . . , xn+m
already appeared inx1, . . . , xn. Then it codifies the string found with a two-number code composed by: the distance
between the two strings and the lengthm of the string found. If the zipper does not find any match then it codifies
the first character to be zipped,xn+1, with its name. This eventuality happens, for instance, when codifying the first
characters of the sequence, but this event becomes very unfrequent as the zipping procedure goes on.

LZ77 algorithm has the following remarkable property: if it encodes a text of lengthL emitted by an ergodic
source (precisely a typical sequence emitted by a stationary stochastic process with finite memory) whose entropy
per character ish, then the length of the zipped file divided by the length of the original file tends toh/ ln 2 when
the length of the text tends to∞. In other words it does not encode the file in the best way but it does it better and
better as the length of the file increases. More precisely the code rate, i.e. the average number of bits per symbol
needed to encode the sequence, can be written as

code rate= average number of bits to encode the phrase

length of the phrase
� ln N + ln LN + O( ln ln LN)

LN ln 2
, (10)

whereLN is the average length of the phrase substituted andN the length of the part of the sequence already
analyzed. Note that lnN is the number of bits needed to encode the part of the pointer describing the distance,
while ln LN is the number of bits needed to encode the part of the pointer describing the length of the substitution.
Recalling[36] that forN → ∞ one has thatLN → ln N/h (in probability) one obtains

code rate� h

ln 2
+O

(
ln ln N

ln N

)
, (11)

i.e. the LZ77 algorithm converges asymptotically to the Shannon entropy even though the convergence is extremely
slow. It is important to remind that the redundancy of the LZ77 coding has been rigorously determined by Savari
[37].

The first conclusion one can draw is therefore about the practical possibility to measure the entropy of a large
enough sequence simply by zipping it. For example, if one compresses an English text the length of the zipped file is
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typically of the order of one-fourth of the length of the initial file. An English file is encoded with 1 byte (8 bits) per
character. This means that after the compression the file is encoded with about 2 bits per character. Obviously this
is not yet optimal. Shannon with an ingenious experiment showed that the entropy of the English text is something
between 0.6 and 1.3 bits per character[38] (for a recent study see[39]).

3.1. Relative entropy

Another important quantity we need to recall is the notion of relative entropy or Kullback–Leibler divergence
[40–42]which is a measure of the statistical remoteness between two distributions. Its essence can be easily grasped
with the following example. Let us consider two ergodic sourcesA andB emitting sequences of independent 0
and 1:A emits a 0 with probabilitypA and 1 with probability 1− pA, while B emits 0 with probabilitypB and
1 with probability 1− pB. As already described, the compression algorithm applied to a sequence emitted byA

will be able to encode the sequence almost optimally, i.e. with an average number of bits per character equal to
−pA ln pA − (1 − pA) ln (1 − pA). This optimal coding will not be the optimal one for the sequence emitted
by B. In particular the entropy per character of the sequence emitted byB in the coding optimal forA will be the
cross-entropy per character:

h̃(B‖A) ≡ h̃(pB‖pA) = −pB ln pA − (1 − pB) ln (1 − pA), (12)

while the entropy per character of the sequence emitted byB in its optimal coding is−pB ln pB − (1 − pB) ln
(1 − pB). The number of bits per character wasted to encode the sequence emitted byB with the coding optimal
for A is the relative entropy per character ofA andB:

d(B‖A) ≡ d(pB‖pA) = −pB ln
pA

pB
− (1 − pB) ln

1 − pA
1 − pB . (13)

A linguistic example will help to clarify the situation: transmitting an Italian text with a Morse code optimized for
English will result in the need of transmitting an extra number of bits with respect to another coding optimized for
Italian; the difference is a measure of the relative entropy.

Given two stationary and ergodic sources of symbols of a same alphabet, of measurepA andpB, using the
notation ofEq. (1), theN-block cross-entropy is defined as

H̃N(B‖A) = −
∑
{CN }

pB(CN) ln pA(CN), (14)

while theN-block relative entropy is

DN(B‖A) = −
∑
{CN }

pB(CN) ln
pA(CN)

pB(CN)
= H̃N(B‖A)−HN(B), (15)

whereHN(B) is theN-block entropy of the sourceB. The cross-entropy per character and the relative entropy for
character are defined as follows:

h̃(B‖A) = lim
N→∞

1

N
H̃N(B‖A) = − lim

N→∞
1

N

∑
{CN }

pB(CN) ln pA(CN) (16)

and

d(B‖A) = lim
N→∞

1

N
DN(B‖A) = − lim

N→∞
1

N

∑
{CN }

pB(CN) ln
pA(CN)

pB(CN)
= h̃(B‖A)− h(B), (17)

whereh(B) is the entropy per character of the sourceB.
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Let us stress that in general all these quantities could be infinite simply because of sequences emitted by the first
source and not existing in the second (i.e.pA(CN) = 0 andpB(CN) �= 0 for some sequencesCN ). In Section 5we
will discuss how to treat this problem in practical applications.

Finally we mention that recently an algorithm has been proposed by Ziv and Merhav[11] for the measurement
of the relative entropy. The method is based on a procedure very similar to the one used in the LZ77.

4. Relative entropy and learning

Let us now describe how the LZ77 algorithm zips a file obtained by appending a fileB of lengthLB to a fileA
of lengthLA. The filesA andB are emitted by two ergodic sources with ergodic measures given bypA andpB,
respectively. We will use the symbolsA andB to denote indifferently the files and their sources.

In particular it is important to understand how the second file is encoded once the sequential zipper starts reading
it. Very roughly what happens is the following. First of all the zipper encodes fileA. Then it begins encoding file
B. Initially the zipper will find the longest match of the fileB in the fileA. After a while, however, the longer
is the fraction ofB already analyzed, the larger will be the probability to find the longest match in fileB itself.
Asymptotically the longest matches of fileB will be found only insideB. This means that we can roughly describe
this process as a two step process: in a first time the zipper tends to optimize the coding for theA part while in a
second time it encodes theB file with the coding obtained for theA part (transient) as well as with the statistics
proper of theB file (which will asymptotically dominate). For these reasons the zipping procedure ofA+B can be
seen as a sort of learning process.

It is convenient here to consider the following idealized problem. Letσ = (σ1σ2 · · · ) be an infinite sequence
extracted with measurepB. LetσA be a sequence of lengthLA extracted with the measurepA, andσB a sequence of
lengthLB extracted with the measurepB. LetnA,nB be the largest integersm such that(σ1σ2 · · · σm) is contained in
σA, σB, respectively. Let us define the functionP(LA,LB) as the probability thatnA > nB. In the zipping procedure
P(LA,LB) will be the probability that, once the zipper is scanning theB part of theA+ B file, it finds a matching
in theA part rather than in theB part.

We can say that the typical distance between two occurrences of the same substring is inversely proportional to
the probability of the substring itself. An argument based on the Shannon–McMillan theorem[11] shows that the
probability of occurrence of a string of lengthN of the sequenceσ with respect to the measurepA is asymptotically
given by e−N[h(B)+d(B‖A)] .

Therefore the lengthnA of the longest match found inA will be obtained approximately by imposing
LA e−N[h(B)+d(B‖A)] = 1, whose inversion gives

nA = ln LA
h(B)+ d(B‖A). (18)

Analogously the length of the longest match found in the part of fileBalready encoded will be given approximately by

nB = ln LB
h(B)

. (19)

Therefore we expect that if

ln LB
h(B)

� ln LA
h(B)+ d(B‖A), (20)

the longest match will be found inA, i.e.P(LA,LB) � 1, while if

ln LB
h(B)

� ln LA
h(B)+ d(B‖A), (21)
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one expects to find it inB, i.e. P(LA,LB) � 0. These relations allow for defining a cross-over length for the
sequenceB given by

L∗
B � LαA (22)

with α = h(B)/(h(B) + d(B‖A)). This is the length below which the compression algorithm does not learn the
sequenceB (measuring in this way the cross-entropy betweenA andB) and above which it learnsB, i.e. optimizes
the compression using the specific features ofB.

It is important now to focus more precisely on the transient region where, as already noticed, there takes place a
sort of learning process. In order to do this we first consider the case in which the two sequencesA andB are (0,
1) Bernoulli sequences of lengthLA andLB, respectively. Afterward we shall try to generalize the result.

The first source emits 0 with probabilitypA and 1 with probability 1− pA. The second source emits 0 with
probabilitypB and 1 with probability 1− pB. Therefore, in a typical sequence of lengthN emitted by the second
source, 0 will appear approximatelypBN times while 1 will appear approximately(1−pB)N times. More precisely
we can say thatm0 (the number of zeros in the second sequence) is approximately a Gaussian random variable with
averagepBN and variance O(N).

By neglecting the fluctuations ofm0, one has that the probability of this sequence with respect to the measure of
the first source will be approximately given by

p
pBN

A (1 − pA)(1−pB)N = eN[pB ln pA+(1−pB) ln (1−pA)] . (23)

This expression is nothing but e−N[h(B)+d(B‖A)] .
Now let us take into account the fluctuations.m0 has random fluctuations of order

√
N around its average. This

fluctuations induce fluctuations of the probability of this string with respect to the measurepB. We then expect
fluctuations of order

√
nA = O(

√
ln LA) of the lengthnA of the longest match found in the first string. The same

is true fornB. It seems therefore reasonable that the distributions ofnA, nB tend to Gaussian distributions with
averages given by(18) and (19), and variances given bycA ln LA, andcB ln LB wherecA andcB are constants.

ThereforeP(LA,LB) is the probability that a Gaussian variable is larger than another Gaussian variable. This
problem can be easily analyzed and lead us to conjecture thatP(LA,LB) converges to a function when suitably
scaled: more precisely

P(x, y) →
x,y→∞f

(
ln x− α ln y√

ln x+ ln y

)
. (24)

On the basis of large deviations theory[43], we expect this conjecture to be valid for sequences with short term
memory, i.e. where the correlations decay sufficiently fast. In the next section we shall numerically check this
conjecture.

Let us conclude this section by noticing that the fluctuations of the string found by LZ77 (the fluctuations ofnB

in the case analyzed here), have been characterized in[44] in the case of a Markovian source. In particular it has
been proved that the length of the longest phrase found is asymptotically distributed with a Gaussian distribution
with average lnL/h, and variance∝ ln L, whereh is the entropy of the source. Other very interesting related
problems have been considered in[45,46].

5. Numerical results

The hypothesis for the scaling form(24) introduced in the previous section for the so-called learning function,
can be tested for finite size sequences generated according to some stochastic rule, e.g. with pseudo-random number
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generators or with some nontrivial dynamical systems. In this section we shall check this hypothesis in three cases
featuring an increasingcomplexity: Bernoulli schemes, Markov processes and finally non-Markovian processes
obtained with an empirical symbolic sequence generated by the Lozi map.

5.1. Bernoulli scheme

The simplest random sequence of symbols is generated by a Bernoulli scheme: at each timet the symbolσt is 0
with probabilityp and 1 with probability 1−p, with p ∈ [0,1]. This is the sequence of biased (unfair) coin tosses;
it is very easy to see thath = hn = Hn/n = −[p ln p + (1 − p) ln (1 − p)] for everyn ≥ 1, and the effective
measure complexity isC = 0.

We have generated a sequenceA of 0’s and 1’s of lengthLA with a probabilitypA for 0’s, and then a set of 5000
sequencesB of lengthLB where 0’s occur with probabilitypB. For these cases the relative entropy per character is
given byEq. (13). For each sequence of this set, the following numerical experiment has been performed:

1. A sequenceAB (of lengthLA + LB) is obtained appending theB sequence to the end of theA sequence.
2. One starts scanning the sequenceAB from the pointi = istart = LA + 1, i.e. from the first character of the

sequenceB.
3. One looks for the longest sub-sequence that:

(a) starts ati;
(b) is identical to a sub-sequence contained in the part [1, i] of the joint sequenceAB.
The length of this maximum sub-sequence is callednmax.

4. The indexi is increased bynmax. If i < LA + LB the algorithm goes to 3, otherwise the algorithm stops.

In the above procedure, one keeps track of the statistics of the sub-sequence matchings; in particular we are
interested in the number of sub-sequences found inA or in B as a function ofLB. At the beginning of the
scanning procedure most of the matchings are found inA. WhenLB is large enough, sub-sequence matchings
found inB can be competitive with their length against the ones found inA. The procedure of averaging over
many “realizations” of sequenceB allows for a smooth statistics, i.e. a smooth curveP(LA,LB) versusLB with
fixedLA.

Fig. 1reports the curves obtained with the above procedure forP(LA,LB) versusLB for different values ofLA
and different choices of the pair(pA, pB), as well as their collapse using the scaling function(24). The collapse
is indeed very satisfying, bringing the first evidence for the conjecture in(24). In the picture is also shown the
failure of the scaling form whenα is too small (pluses andcrosses in the inset, not reported in the main plot).
This happens when the two sequences are too different or when the second sequence has an entropyh very low;
in both cases the convenience of parsing the sub-sequences ofB with sub-sequences of its own past (and not from
A) comes too early, as can be seen in the inset of the figure. As a consequence of this, the length ofA does not
matter for the parsing of sequenceB and the two curves obtained with differentLA (those withα = 0.156) are
identical.

5.2. Markovian sequences

The natural step after Bernoulli schemes, is a test using sequences generated by means of Markov chains. A
Markov chain is a random process with discrete states, where the probability of every state is determined by one or
more previous states. The order of Markov chains is the number of previous states influencing the present, e.g. for
a Markov chain of orderk = 1 the probability of having a certain symbol depends only on the previous symbol and
is determined by its conditional probabilityWij = P(σt = j|σt−1 = i). We have tested the scaling hypothesis on
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Fig. 1. Collapse ofP(LA,LB) versus the rescaled coordinate (discussed in the text), for different pairs of Bernoulli processes with different
probabilities of symbol “zero”(pA, pB) and with different lengthsLA of bufferA. In the inset the same data are shown versusLB, i.e. without any
rescaling. The values ofα are the following: 0.643 for(pA, pB) = (0.3,0.7), 0.768 for(pA, pB) = (0.4,0.7), 0.892 for(pA, pB) = (0.4,0.6),
0.156 for(pA, pB) = (0.1,0.9).

the Lempel–Ziv parsing procedure of pairs of two symbols, order one, symmetric Markov chains. This means that
bothA andB are sequences of 0’s and 1’s and that their transition matrix is of the form:

W =
(

w 1 − w
1 − w w

)
(25)

with w ∈ [0,1] the probability of repeating the previous symbol. The sequencesA andB have different transition
matrices, i.e.w = wA for A andw = wB for B. In practice a sequence obtained withw near 1 is something like
11111100000011111100000. . . , while a sequence obtained withw near 0 is like 010101001010101101010. . . .

For a Markov chain of order 1 one hasHN = H1 + (N− 1)h andC = H1 −h. Moreover we are interested in the
cross-entropy per characterh̃N = H̃N+1(B‖A)− H̃N(B‖A) versusN, where, following the notation ofEq. (14)

H̃N = −
∑

{CN }∗
pB(CN) ln pA(CN) = HN(B)+D∗

N(B‖A), (26)

where{CN}∗ is the set ofN-sequences contained both inA andB. In formula (26) D∗
N(B‖A) is given by the

definition (15) with the restriction that the sum runs only on theN-sequences contained in bothA andB. This
defines, coherently with(17), the limit d∗(B‖A) = limN→∞ 1/ND∗

N(B‖A). If we consider infinite sequencesA
andB and a two states Markov process (as the one introduced in this section) then{CN}∗ ≡ {CN}, i.e. the whole
set of 2N sequences of lengthN is explored by both dynamics and thereforeD∗

N ≡ DN andd∗ ≡ d. For the kind
of Markov chain described by the transition matrix in(25), we can therefore calculate

H̃N = H̃1 − (N − 1)
∑

{SiSj}
PB(Si)W

B
ij ln WA

ij , (27a)

h̃N = h̃(B‖A) = h(A)+ d(B‖A) = −
∑

{SiSj}
PB(Si)W

B
ij ln WA

ij . (27b)

More in general the above formulas hold ifWAij is positive whenWB
ij is positive.

In Fig. 2we show the effects of finiteness of the sequencesA andB onhN andh̃N ; for finite sequencesA andB,
even in the case of two state Markov chains, the sets of words of lengthN may not coincide.A andB are sequences
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Fig. 2. Left:HN − HN−1 versusN for a Markov process of order 1 with symmetrical transition matrix (seeEq. (25)) calculated numerically
using a sequence of 20,000 symbols, for different values of the parameterw. The plateau (reached atN = 2) corresponds to the theoreticalh,
while the successive decay of the curves is due to poor statistics. Right: cross-entropyh̃N = H̃N − H̃N−1 for different pairs(A,B) of such
Markov processes, characterized by parameterswA,wB. The plateaus (put in evidence by dashed lines) correspond to the theoretical valueh̃.

of length 20,000 generated with the symmetric one-step Markov processes with different transition matricesW , i.e.
with different parameterswA andwB.

It can be seen that the plateau representingh is reached atN = 2, as expected for Markov chains of order
k = 1. Moreover, the effect of finite size can be seen: the sequences considered are 20,000 symbols long, therefore,
invoking the Shannon–McMillan theorem, one has thatN must not be too large in order to satisfy the condition
that the number of typicalN-sequences be much smaller than the length of the sequence, i.e.N = 2hN � 20,000.
Otherwise the statistics becomes too poor andhN rapidly departs fromh. In the right plot ofFig. 2 we show the
behavior ofh̃N : the first plateau of the curves in this graph provides an estimate of the cross-entropyh̃(B‖A).
This figure shows how finite size effects appear in the computation ofd(B‖A), well before those appearing in the
computation ofh; this is a direct consequence of the operative definition used in this computation: in order to have a
good estimate of̃hN a large amount ofN-sequences common both toA andB is indeed needed, reducing the value
of the finite size cut-off. The scaling ofP(LA,LB) for pairs of Markov sequences is shown inFig. 3. Again a good

Fig. 3. Collapse ofP(LA,LB) versus the rescaled coordinate for Markov processes of order 1 and symmetric transition matrix (seeEq. (25))
with different values of the pairs(wA,wB), with LA = 20,000. In the figure are also indicated the values ofα (see(24)). In the inset the data
without rescaling.
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collapse is obtained using the previously proposed scaling form(24). It is also clear that the collapse fails for pairs
of processes withα� 1, i.e. the pairs with the strongest difference in the transition matrix.

5.3. Non-Markovian sequences: Lozi map symbolic dynamics

It is interesting to probe a class of signals (i.e. sequences) with a higher degree of complexity, i.e. large memory
and forbidden words. Chaotic dynamical systems are a rather natural source of such nontrivial signals. A symbolic
sequence can be associated to the dynamical system by means of a partition of the phase spaceΩ, i.e. {ωi} with
m elements such that

⋃m
i=1ωi = Ω andωi ∩ ωj = 0 for everyi andj in [1,m]. Every trajectoryx(t) is therefore

mapped into a sequence of symbols of them-alphabet. An interesting nontrivial example can be obtained with a
binary partition of thex variable of the Lozi map, defined as

x(n+ 1) = −a|x(n)| + y(n)+ 1, y(n+ 1) = bx(n), (28)

wherea andb are parameters. The sequence of symbols used in the following test is obtained taking 0 whenx ≤ 0
and 1 whenx > 0. Forb = 0.5, numerical studies show that the Lozi map is chaotic fora in the interval (1.51, 1.7).
For a discussion of the Lozi map, computation of Lyapunov exponents and representation of its symbolic dynamics
in terms of Markov chains, see[47].

Fig. 4 reports the numerical computation ofHN andH̃N (the block entropy and the block cross-entropy) for
several sequence lengths, using always the same pair of processesaA = 1.56 andaB = 1.52. The aim is putting in
evidence finite size effects as well as estimating Shannon and Kullback–Leibler entropies needed for the collapse
of P(LA,LB). The estimate ofd(B‖A) andh(B) and therefore ofα is obtained with a level of confidence of 10%.
Due to statistic effects, we measure the slopes of the curves (both forHN andH̃N ) in the range ofN where the
slope is constant, as already done inFig. 2. Let us note that in the symbolic sequence generated by the Lozi map
there is also the problem of the lack of equivalence between{CN} and{CN}∗ (seeEq. (26)). However one must
note that theA + B zipping procedure used in our analysis finds only sequences contained in bothA andB. It is
natural, therefore, to measureD∗

N (which in this case is different fromDN ) and from this estimated∗.
Fig. 4 is particularly enlightening from the point of view of the meaning of the effective measure complexityC

defined inEq. (7). A naive order 1 Markovian approximation of the map is far from reproducing the dynamical
properties of the Lozi map. This can be appreciated inFig. 4, noting thatC is not small.

Fig. 4.HN andH̃N versusN for sequences of symbols obtained with a binary partition of the Lozi map. TheHN are calculated using Lozi map
with parametera = 1.52 anda = 1.56. TheH̃N are calculated using pairs of Lozi map withaA = 1.56 andaB = 1.52. All calculations have
been performed with sequences of different lengthL, to probe finite size effects.
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Fig. 5. Collapse ofP(LA,LB) versus the rescaled coordinate for sequences of symbols obtained with a binary partition of the Lozi map with
parameters pairs(aA, aB) = (1.56,1.52), using an estimate ofα = 0.78 obtained using the valuesh(B) = 0.15 andh̃ = 0.19 (seeFig. 4) In
the inset the same data are shown versusLB, i.e. without rescaling.

Finally, in Fig. 5 it is shown that the collapse of the learning curvesP(x, y) is very well verified, using again
averages on theB sequence (i.e. different initial conditions) and different lengths for theA sequence. In this case
we have usedd∗(B‖A) instead ofd(B‖A) to computeα, i.e.:

α = h(B)

h(B)+ d∗(B‖A). (29)

6. An experiment of recognition

The last set of results concerns one of the main motivation of this analysis, i.e. its practical applications. The
algorithm proposed in[23,25]has its main justification in its efficiency on the framework of sequence recognition:
the algorithm is able to provide an estimate of the Kullback–Leibler entropy of a sequence of unknown provenance
relatively to a set of sequences whose provenance is certain (known sources) and used as reference sequences, giving
the most “similar” sequence and therefore the most probable source for the sequence of unknown provenance. In this
context, we have checked that this recipe well recognizes a symbolic sequence drawn from the class of Lozi maps.
Though the results are very preliminary and a systematic analysis should be in order, some interesting conclusions
can be drawn.

Fig. 6reports the result of this test. A Lozi map witha = 1.6, b = 0.5 and initial conditionx = 0.1, y = 0.1 has
been used to generate the sequenceA, of length 10,000, that will be used as unknown sequence. As probing sequences
we have generated two sets of sequences,B andB∗, respectively, obtained with Lozi maps with the parameters
b = 0.5 andaB = aB∗ varying between 1.52 and 1.7. The sequencesB has length of 10,000 while sequenceB∗ has
length of 5000 or 1000. The quantities plotted in the inset are the lengths of the compressed code (with the LZ77
algorithm, see the discussion inSection 2), i.e.C(X) is the length of the code obtained by compressing the sequence
X. Data relative to the compression of the sequencesB+B∗ andA+B∗ have been obtained by averaging over 100
different choices of initial conditions. The quantity computed and reported in the main graph is an estimate of the
Kullback–Leibler entropyd(B‖A), as a difference (per bit) betweenC(A + B∗) − C(A) andC(B + B∗) − C(B)
which are the estimates of the block cross-entropy and of the entropy of B, respectively. The bottom plot shows
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Fig. 6. Estimate, by means of LZ77 compression, ofD(B‖A) (see text) of the Kullback–Leibler entropy relative to different pairs(A,B) of
sequences of symbols: each pair is composed by a fixed sequenceA obtained as a binary partition of a Lozi map with parameteraA = 1.6 and a
variable sequenceBobtained either as a binary partition of a Lozi map with variable parameteraB. The sequences have lengthLA = LB = 10,000.
The estimate of the Kullback–Leibler entropy has its minimum in correspondence of the pair(A,A) (i.e. whenB comes from a Lozi map with
aB = aA): this indicates that this estimate ofD(B‖A) is capable of recognizing in the space of Lozi maps. In the inset the lengths of
the LZ-compressed sequences are reported, whereB∗ is always a sequence of the same kind ofB (note that(LA)α � 1300 and therefore
L∗
B = 1000, andL∗

B = 5000 are below and beyond the cross-over threshold, respectively).

very well how this simple recipe leads to a perfect recognition of the correct value ofa = 1.6: the estimate of the
Kullback–Leibler entropy has in fact an absolute minimum for that value.

In Fig. 6one can also appreciate the usefulness of the theoretical analysis ofSection 4, i.e. the fact that(LA)α is
a good estimate of the best lengthLB of the probe sequencesB to obtain the optimal resolution in the recognition
process. In fact inSection 4we conjectured (and successively verified with numerical experiments) that whenLB

is smaller than the cross-over lengthLαA, the LZ77 algorithm is encoding the sequenceB with the “language”
of A and therefore the length of the encoded sequence is effectively a measure of the distance between the two
languages. Using the previous valueα = 0.78 as a rough estimate for every other choice of the map parametera,
and givenLA = 10,000, one obtains for the cross-over length∼ 1300. In the figure, the resolution power of the
LZ77 algorithm withLB = 1000 is much higher than that withLB = 5000.

7. Conclusions

We have studied the properties of standard sequential compression algorithms in the problem of information
extraction from sequences of characters. We have in particular analyzed the learning process that these algorithm
perform when they are used to compress heterogeneous data, i.e. data coming from different sources.

The typical benchmark for this study is a finite sequence ofLA + LB symbols obtained appending a sequence
of LB symbols emitted by a sourceB to a sequence ofLA symbols emitted by a sourceA. An algorithm like LZ77
[30], after having processed theA part of the sequence, starts encoding theB part using the knowledge acquired
while zipping theA part; after a transient the compression algorithm starts encoding theB part using the knowledge
coming only from theB part already processed (i.e. the zipper starts learning theB part). We have made a scaling
hypothesis that characterizes this transient process in terms of the entropy of the sourceB and the Kullback–Leibler
divergence between the two sequences.

We have studied the finite size scaling (i.e. incorporating fluctuations due to the finite size of the sequences under
investigation) by means of numerical experiments on three sets of data coming from different sources: the Bernoulli
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scheme, the Markov chain of first order (with symmetric transition matrix) and the symbolic dynamics obtained with
a binary partition of the Lozi map. These three examples feature an increasing complexity: the Bernoulli scheme
emits sequences of uncorrelated random symbols; the Markov chain of first order is the simplest way to enforce
correlations among symbols in the sequences; finally the Lozi map has the property of having an higher effective
measure complexity[33,34]. The scaling hypothesis is very well verified in all the cases investigated, pointing out
the generality of the result.

These results have a practical importance in the analysis of a recently proposed scheme that computes the
informational remoteness between two sequences[25]: in fact this scheme employs a variant of the LZ77 algorithm
and gives the best estimate of the remoteness (Kullback–Leibler divergence) when the length of the second sequence
is chosen of the order of the threshold value of the learning function we have introduced in this work. We have
investigated quantitatively this point, showing that the resolution power of the recognition scheme proposed in[25]
is highly improved when the length of the second sequence is chosen according to the analysis of the transient.
Sequences too short or too long can give bad estimates of the Kullback–Leibler divergence and therefore a big
uncertainty in the recognition of similar sequences.

Another important field of application is that of the segmentation of heterogeneous sequences, i.e. the identification
of the boundaries between regions featuring very different properties which, depending on the sequences considered,
can correspond to very different phenomena (catastrophic events in geophysical time series, or boundaries between
different sections in genetic sequences just to quote a couple of examples). In all these cases one could try to exploit
the features of data compression techniques at the interface between heterogeneous regions in order to define and
optimize suitable observables sensitive to sudden changes.
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