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Abstract

Motivated by the problem of the definition of a distance between two sequences of characters, we investigate the so-called
learning process of a typical sequential data compression schemes. We focus on the problem of how a compression algorithr
optimizes its features at the interface between two different sequénaed B while zipping the sequencé + B obtained
by simply appending after A. We show the existence of a scaling function (the “learning function”) which rules the way in
which the compression algorithm learns a sequehedter having compressed a sequerceén particular it turns out that
there exists a cross-over length for the sequeBoehich depends on the relative entropy betwdeand B, below which
the compression algorithm does not learn the sequéngeeasuring in this way the cross-entropy betwdeand B) and
above which it starts learning, i.e. optimizing the compression using the specific featureB. &/e check the scaling on
three main classes of systems: Bernoulli schemes, Markovian sequences and the symbolic dynamic generated by a nontrivi
chaotic system (the Lozi map). As a last application of the method we present the results of a recognition experiment, namely
recognize which dynamical systems produced a given time sequence. We finally point out the potentiality of these results for
segmentation purposes, i.e. the identification of homogeneous sub-sequences in heterogeneous sequences (with applicatio
in various fields from genetic to time-series analysis).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The modern approach to time-series analysis based on the theory of dynamical systems and information theory
(IT) has represented a major advance in the description and comprehension of a wide range of phenomena, fron
geophysics to industrial procesgég]. Time series represent a particular example of the wider category of strings
of characters which also includes as further examples texts or genetic sequences (DNA, proteins). When analyzing
a string of characters the main question is to extract the information it brings. For example, in a DNA sequence this
would correspond to the identification of the sub-sequences codifying the genes and their specific functions. On the
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other hand for a written text one could be interested in recognizing the language in which the text is written, the
subject treated or its author. For time series one could be interested in the extraction of specific featureq8}.trends

In the spirit of having specific tools for the measurements of the amount of information brought by a sequence, it
is rather natural to approach the problem from a very interesting point of view: thaféfaJl Born in the context
of electric communications, IT theory has acquired, since the seminal paper of Sidhreoleading role in many
other fields as computer science, cryptography, biology and pH$$ids this context the word information acquires
a very precise meaning, namely that of the entropy of the string, a measuresof phise the source emitting the
sequences can reserve to us.

It is important to stress that IT deals with ensembles of sequences emitted by an ergodic source, while one is
typically forced to treat a single sequence. In this spirit an appropriate concept is that of algorithmic complexity
(AC) [6-9]. The AC (sometimes called also Kolmogorov complexity) of a string of characters is given by the length
(in bits) of the smallest program which produces as output the string. A string is said to be complex if its complexity
is proportional to its length. This definition is really abstract, in particular it is impossible, even in principle, to find
such a prograrfiL0]. Since this definition tells nothing about the time the best program should take to reproduce the
sequence, one can never be sure that somewhere else there does not exist another shorter program that will eventuall
produce the string as output in a larger (eventually infinite) time; this impossibility is related to the Turing’s theorem
on the halting problem and to the Gédel’s theoljd®.

Despite the impossibility to compute the AC of a sequence, one has to recall that there are algorithms explicitly
conceived to give a good approximation to the [AQ]. Since the AC of a string fixes the minimum number of bits
one should use to reproduce it (optimal coding), it is intuitive that a typical zipper, besides trying to reduce the space
occupied on a memory storage device, can be considered as an entropy meter. The better will be the compression
algorithm, the closer will be the length of the zipped file to the optimal coding limit and the better will be the
estimate of the AC provided by the zipper.

It is well known that compression algorithms represent a powerful tool for the estimation of the AC or more
sophisticated measures of compleXityi—13]and several applications have been drawn in several fiefdsrom
dynamical systems theory (the connections between IT and dynamical systems theory are very strong and go back
all the way to the work of Kolmogorov and Sinai; for a recent overview[$8e17) to linguistics (an incomplete
list would include[18—25)) and genetics (sd@6—28] and references therein).

Some of us have recently proposed a metf2& for context recognition and context classification of strings of
characters or other equivalent coded information. The remoteness between two seduand®&swas estimated
by zipping a sequencg + B obtained by appending the sequerRafter the sequenca and using thegzip
compressof29] (whose core is provided by the Lempel-Ziv 77 (LZ77) algoritf88]). This idea is used for
authorship attribution and, defining a suitable distance between sequences, for languages phylogenesis.

The idea of appending two files and zip the resulting file in order to measure the remoteness between them had
been previously proposed by Loewenstern ef28l] (usingzdiff routines) who applied it to the analysis of DNA
sequences, and by Khmelev and coworke® who applied the method to authorship attribution. In particular
here the method is extensively tested using many different zippers, inclgadmgd hough the idea is the same the
practical implementation differs from the one proposef2hi.

In this paper we extend the analysis[@b] by considering more in detail the features of data compression
algorithms when applied to generic strings of characters. The specific question we raise here is how LZ77-like
compression algorithms behave at the interface between two different files. More specifically we shall focus on
the process by which a typical zipplsarns the sequence it is processing and how it uses previous information
acquired while zipping a given file to zip a second different file. We point out in particular the existence of a
scaling function which rules the way in which the compression algorithm learns the sequafteehaving zipped
sequencel. These kind of problems are closely related to the so-called segmentation problem, i.e. the identification
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of homogeneous sub-sequences in heterogeneous sequences (with applications in various fields from genetic t
time-series analysis).

Since in this case we are interested in exploring the features of the compression algorithms we shall use as
benchmark systems time sequences issued by dynamical systems of increasing complexity. In particular the scalin
function is checked numerically for three main classes of systems: Bernoulli schemes, Markovian sequences and the
nontrivial symbolic dynamic generated by the so-called Lozi map. As a last application of the method we present the
results of a recognition experiment, namely recognize which dynamical systems produced a given time sequence.

The outline of the paper is as follows. Bection 2we recall some basic definitionSection 3s devoted to the
discussion of data compression techniques as well as to recall the definition of relative entropy and the Ziv and
Merhav algorithn{11] for its measure. Iisection 4we study what happens when applying the LZ30] algorithm
to a sequence obtained appending two different sequenc&zedtion 5we analyze numerically the results of
Section 4 In Section 6we perform a recognition experiment on sequences generated by the Lozi map. Finally in
Section Awe draw the conclusions and discuss possible fields of application for these techniques.

2. Basic concepts

Originally IT was introduced by Shannd4] in the practical context of electric communications. The powerful
concepts and techniques of IT allow for a systematic study of sources emitting sequences of discrete symbols (e.g
binary digit sequences) and in the last decades there have been shown the deep relations between IT and other fiel
as computer science, cryptography, biology and chaotic syg§t&ig.

Consider a symbolic sequenegr, - - -, whereo; is the symbol emitted at timeand eacly; can assume one of
m different values. Assuming that the sequence is stationary we introdudé feck entropy:

Hy =—)_ p(Cy) In p(C), €N
{Cn}

wherep(Cy) is the probability of theV-word Cy = (070141 - - - 0144—1), @and In = log,. The differential entropies:
hy = Hyy1— Hy (2)

have a rather obvious meanirigy is the average information supplied by ttfé + 1)th symbol, provided thev

previous ones are known. Noting that the knowledge of a longer past history cannot increase the uncertainty on the
next outcome, one has thigy cannotincrease with, i.e.hy1 < hx. Now we are ready to introduce the Shannon
entropy for an ergodic stationary process:

. . Hy
b= AN = N )
Itis easy to see that foriah order Markov process, i.e. such that the conditional probability to have a given symbol
only depends on the lagtsymbols,p(o;|oy—10,—2, ...) = p(o¢|loy—10—2, ..., 01—k), thenhy = h for N > k.

The Shannon entropy measures the average amount of information per symbol and it is an estimate of the
“surprise” the source emitting the sequence reserves to us. The fact is remarkable that, under rather natural assumj
tions, the entropyHy apart from a multiplicative factor, is the unique quantity which characterizes the “surprise”
of the N-words[31]. Let us try to explain in which sense entropy can be considered as a measure of a surprise.
Suppose that the surprise one feels upon learning that an event E has occurred depends only on the probability ¢
E. If the event occurs with probability 1 (sure!) our surprise in its occurring will be zero. On the other hand if the
probability of occurrence of the event E is quite small our surprise will be proportionally large. For a single event
occurring with probabilityp the surprise is proportional te In p. Let us consider now a random variabfewhich
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can takeN possible valuessy, ..., xy with probabilitiesps, ..., py, the expected amount of surprise we shall
receive upon learning the value &fis given precisely by the entropy of the source emitting the random variable
X, ie. — Zpi In Di-

A theorem, due to Shannon and McMillh31], expresses in a precise way héwuantifies the “complexity”
of the source: ifN is large enough, the set of-words{Cy} can be partitioned in two classe®; (N) and 22(N)
such that all the word€'y € £21(N) have probabilityp(Cy) ~ e ™ and

> p(Cy)—>1 for N— oo, (4a)
Cnes21(N)

> p(Cy)—>0 for N— co. (4b)
CNE2N)

Animportantimplication of the theoremis that the number of typical sequée¥igesV) (those in21(N)) effectively
observable is

Neit (N) ~ N, %)

Note that in nontrivial cases, in whigh< In m, Negt(N) < m”™, m" being the total number of possiblewords.
Let us remark that the Shannon—McMillan theorem for processes without memory is nothing but the law of large
numbers. Writing=q. (5)in the formHy ~ In Negt one can understand its relation with the Boltzmann equation in
statistical thermodynamicsoc In W, W being the number of possible microscopic statesstie thermodynamic
entropy.
An important result is the relation between the maximum compression rate of a se¢ugence - ) expressed in
an alphabet witlm symbols, and. If the lengthT of the sequence is large enough, then it is not possible to compress
it into another sequence (with an alphabet wiftsymbols) whose size is smaller th@im/ In M. Therefore, noting
that the number of bits needed for a symbol in an alphabet Wittymbol is InM, one has that the maximum
allowed compression rateig In M. Perhaps the simplest way to compress, at least at a conceptual level, is via the
Shannon—Fano procedure which is able to reach asymptotically the maximum allowed compresg3@h raliso
the popular Lempel-Ziv codini@0] (see in the following for a short discussion) gives the same asymptotic results.
We stress the fact thatis an asymptotic quantity which gives the behavioHaf (or equivalently: i) at largen,
i.e.h >~ Hy/N for N > 1. On the other hand the featuresty; (or 4 y) for moderateV are rather important in all
nontrivial processes (i.e. with memory). An important quantity introduced to measure these effects and characterize
the properties of a sequence from the behavioHgf is the so-calledxcess entropy [33] or effective measure
complexity [34] (for a recent overview and other references where these concepts have been discU§sdyl see
Let us introduce

Shy =hy-1—hy (6)

and the excess entropy (or effective measure complexigy
o0
C= ) Néhy. (1)
N=1
It is not difficult to realize that, for larg&/, one has

Hy ~ C + hN. 8

In trivial processes (e.g. Bernoulli scheme&s)= 0, on the other hand can be nonzero in cases with zérde.g.
periodic sequences). Particularly interesting are the cases Wwherpositive andC is not negligible; nontrivial
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examples are given by dynamical systems producing sequences with memory and forbidden words, such as the Loz
map, which is discussed Bection 5.3

3. Data compression and complexity

As already mentioned there exists an important relation between the maximum compression rate achievable for
given sequence and its AC. We have as well stressed that AC, at variance with IT, does not deal with an ensemble o
sequences, but with a single sequence. On the other hand there is a rather important relation between the Kolmogoro
complexity (or AC)K y (Wy) of a N-word Wy andHy:

1

(K)_1§K(W)P(W)—>h
N N T NZ NN N D o n 27
N

9)
whereK y is the binary length of the shorter program needed to specifyvtheord Wy .

In Section 1we have already outlined that, despite the impossibility to compute the AC of a sequence, data
compression techniques represent effective tools for an estimation of AC or other measures of complexity. In
particular any such algorithm provides with an upper bound of the real AC.

A great improvement in the field of data compression has been represented by the Lempel and Ziv algorithm
(LZ77)[30] (used, for instance, lyzip andzip). Itis interesting to briefly recall how it works. Let= x1, ..., xy, be
the sequence to be zipped. The LZ77 algorithm proceeds sequentially along the sequence. Let us suppose that the fir
n characters have been codified. Then the zipper looks for the largest intasgeh that the string;,, 11, . . ., Xp+m
already appearedin, .. ., x,,. Then it codifies the string found with a two-number code composed by: the distance
between the two strings and the lengthof the string found. If the zipper does not find any match then it codifies
the first character to be zipped, 1, with its name. This eventuality happens, for instance, when codifying the first
characters of the sequence, but this event becomes very unfrequent as the zipping procedure goes on.

LZ77 algorithm has the following remarkable property: if it encodes a text of lehgemitted by an ergodic
source (precisely a typical sequence emitted by a stationary stochastic process with finite memory) whose entropy
per character ig, then the length of the zipped file divided by the length of the original file tendg o 2 when
the length of the text tends te. In other words it does not encode the file in the best way but it does it better and
better as the length of the file increases. More precisely the code rate, i.e. the average number of bits per symbo
needed to encode the sequence, can be written as

average number of bits to encode the phrasén N + In Ly + O(In In Ly)

code rate=
length of the phrase LyIn2

: (10)

where Ly is the average length of the phrase substituted Mrtie length of the part of the sequence already
analyzed. Note that IV is the number of bits needed to encode the part of the pointer describing the distance,
while In Ly is the number of bits needed to encode the part of the pointer describing the length of the substitution.
Recalling[36] that for N — oo one has thaLy — In N/k (in probability) one obtains

h InInN
derat O , 11
co erae:|n2+ ( n N ) (11)

i.e. the LZ77 algorithm converges asymptotically to the Shannon entropy even though the convergence is extremely
slow. It is important to remind that the redundancy of the LZ77 coding has been rigorously determined by Savari
[37].

The first conclusion one can draw is therefore about the practical possibility to measure the entropy of a large
enough sequence simply by zipping it. For example, if one compresses an English text the length of the zipped file is
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typically of the order of one-fourth of the length of the initial file. An English file is encoded with 1 byte (8 bits) per
character. This means that after the compression the file is encoded with about 2 bits per character. Obviously this
is not yet optimal. Shannon with an ingenious experiment showed that the entropy of the English text is something
between 0.6 and 1.3 bits per chara¢88] (for a recent study sd&9]).

3.1. Relative entropy

Another important quantity we need to recall is the notion of relative entropy or Kullback—Leibler divergence
[40-42]which is a measure of the statistical remoteness between two distributions. Its essence can be easily grasped
with the following example. Let us consider two ergodic sourdesnd B emitting sequences of independent 0
and 1:A emits a 0 with probabilityp4 and 1 with probability - p4, while B emits 0 with probabilityps and
1 with probability 1— pp. As already described, the compression algorithm applied to a sequence emitted by
will be able to encode the sequence almost optimally, i.e. with an average number of bits per character equal to
—palnps— (1= py) In (1 — pa). This optimal coding will not be the optimal one for the sequence emitted
by B. In particular the entropy per character of the sequence emittélibyhe coding optimal forA will be the
cross-entropy per character:

h(B|A) = h(pgllpa) = —pp In pa — (L — pp) In (L— pa), (12)

while the entropy per character of the sequence emittest loyits optimal coding is—pg In pp — (1 — pp) In
(1 — pp). The number of bits per character wasted to encode the sequence emiBaglitiythe coding optimal
for A is the relative entropy per character4find B:

1_
d(B||A) = d(psllps) = —ps In % ~@A-ppIng pa.

(13)
— PB
A linguistic example will help to clarify the situation: transmitting an Italian text with a Morse code optimized for
English will result in the need of transmitting an extra number of bits with respect to another coding optimized for
Italian; the difference is a measure of the relative entropy.

Given two stationary and ergodic sources of symbols of a same alphabet, of mgasanel pp, using the
notation ofEq. (1) the N-block cross-entropy is defined as

Hy(BIIA) ==Y ps(Cn) In pa(Cy), (14)
{Cn}
while the N-block relative entropy is

pa(Cn)

= Hy(B||A) — Hy(B), 15
25(Cr) ~N(BJ|lA) N(B) (15)

Dn(BIIA) == pp(Cy) In
{Cn}

whereHy (B) is the N-block entropy of the sourcB. The cross-entropy per character and the relative entropy for
character are defined as follows:

- 1. o1
h(B||A) = NlinooﬁHN(B”A) = _ng'ooﬁ Z pB(CN) In pa(Cy) (16)
{Cn}
and

pa(Cy)
pB(Cy)

-1 1 ~
d(B||A) = IJEHOONDN(BIIA) = —Nlﬂloﬁ {CXN:} pa(Cy) In = h(B||A) — h(B), 17)

whereh(B) is the entropy per character of the souie
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Let us stress that in general all these quantities could be infinite simply because of sequences emitted by the firs
source and not existing in the second (pg(Cy) = 0 andpp(Cx) # 0 for some sequence&sy). In Section 5we
will discuss how to treat this problem in practical applications.

Finally we mention that recently an algorithm has been proposed by Ziv and M@rhigor the measurement
of the relative entropy. The method is based on a procedure very similar to the one used in the LZ77.

4. Reélative entropy and learning

Let us now describe how the LZ77 algorithm zips a file obtained by appendingRdiléength L 5 to a file A
of length L 4. The filesA and B are emitted by two ergodic sources with ergodic measures giverytand pp,
respectively. We will use the symbatsand B to denote indifferently the files and their sources.

In particular it is important to understand how the second file is encoded once the sequential zipper starts reading
it. Very roughly what happens is the following. First of all the zipper encodestfilEhen it begins encoding file
B. Initially the zipper will find the longest match of the file in the file A. After a while, however, the longer
is the fraction ofB already analyzed, the larger will be the probability to find the longest match iB filself.
Asymptotically the longest matches of filewill be found only insideB. This means that we can roughly describe
this process as a two step process: in a first time the zipper tends to optimize the codingAfqrattievhile in a
second time it encodes thfile with the coding obtained for tha part (transient) as well as with the statistics
proper of theB file (which will asymptotically dominate). For these reasons the zipping procedure-a can be
seen as a sort of learning process.

It is convenient here to consider the following idealized problem.d et (o102 ---) be an infinite sequence
extracted with measuneg. Letos be a sequence of lengthy extracted with the measupe, andop a sequence of
lengthL p extracted with the measupg;. Letn 4, n g be the largest integens such thafo10o2 - - - 0, is contained in
o4, 0B, respectively. Let us define the functi®iL 4, L g) as the probability that4 > n . In the zipping procedure
P(L 4, L) will be the probability that, once the zipper is scanning Bheart of theA + B file, it finds a matching
in the A part rather than in th® part.

We can say that the typical distance between two occurrences of the same substring is inversely proportional tc
the probability of the substring itself. An argument based on the Shannon—McMillan thgbteanows that the
probability of occurrence of a string of lengthof the sequence with respect to the measupg is asymptotically
given by @ N[1(B)+d(B||A)]

Therefore the lengthhs of the longest match found im will be obtained approximately by imposing
L e NhB)+d(BIA)] = 1 whose inversion gives

In La
~ h(B)+d(B||A)

Analogously the length of the longest match found in the part oBfaé&eady encoded will be given approximately by

na (18)

In Lp
= —, 19
"B B (19)
Therefore we expect that if
In Lp In Ly
< , 20
h(B) h(B) + d(B| A) (20)
the longest match will be found iA, i.e. P(L 4, L) >~ 1, while if
In L In L
B A (21)

h(B) = h(B)+d(B|A)’
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one expects to find it irB, i.e. P(L4, Lp) ~ 0. These relations allow for defining a cross-over length for the
sequenceB given by

Ly~ LG (22)

with « = h(B)/(h(B) + d(B||A)). This is the length below which the compression algorithm does not learn the
sequenceB (measuring in this way the cross-entropy betwdesnd B) and above which it learns, i.e. optimizes
the compression using the specific features of

It is important now to focus more precisely on the transient region where, as already noticed, there takes place a
sort of learning process. In order to do this we first consider the case in which the two seqdiemzeB are (0,

1) Bernoulli sequences of lengthy andL g, respectively. Afterward we shall try to generalize the result.

The first source emits O with probabilitys and 1 with probability 1— p4. The second source emits 0 with
probability pg and 1 with probability - pg. Therefore, in a typical sequence of lengtfremitted by the second
source, 0 will appear approximatehg N times while 1 will appear approximate{§ — pp) N times. More precisely
we can say that (the number of zeros in the second sequence) is approximately a Gaussian random variable with
averagepp N and variance QV).

By neglecting the fluctuations @fp, one has that the probability of this sequence with respect to the measure of
the first source will be approximately given by

pZBN(l — pa) PN _ @Nlps 0 pat=pp) In A=pa)] (23)

This expression is nothing but 4 (B)+d(BIA)]

Now let us take into account the fluctuationsy has random fluctuations of ordefN around its average. This
fluctuations induce fluctuations of the probability of this string with respect to the meaguide then expect
fluctuations of ordeg/na = O(/In L) of the lengthn 4 of the longest match found in the first string. The same
is true fornp. It seems therefore reasonable that the distributions,0fi gz tend to Gaussian distributions with
averages given b§18) and (19)and variances given hy, In L4, andcp In L wherec, andcp are constants.

ThereforeP(L 4, L) is the probability that a Gaussian variable is larger than another Gaussian variable. This
problem can be easily analyzed and lead us to conjecturePtliat, L z) converges to a function when suitably
scaled: more precisely

nNx—alny
re, o (i) 24

On the basis of large deviations thed#g], we expect this conjecture to be valid for sequences with short term
memory, i.e. where the correlations decay sufficiently fast. In the next section we shall numerically check this
conjecture.

Let us conclude this section by noticing that the fluctuations of the string found by LZ77 (the fluctuatigns of
in the case analyzed here), have been characteriZédjin the case of a Markovian source. In particular it has
been proved that the length of the longest phrase found is asymptotically distributed with a Gaussian distribution
with average InL/h, and variancex In L, wherer is the entropy of the source. Other very interesting related
problems have been considered45s,46]

5. Numerical results

The hypothesis for the scaling for(B4) introduced in the previous section for the so-called learning function,
can be tested for finite size sequences generated according to some stochastic rule, e.g. with pseudo-random numbe
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generators or with some nontrivial dynamical systems. In this section we shall check this hypothesis in three cases
featuring an increasingomplexity: Bernoulli schemes, Markov processes and finally non-Markovian processes
obtained with an empirical symbolic sequence generated by the Lozi map.

5.1. Bernoulli scheme

The simplest random sequence of symbols is generated by a Bernoulli scheme: at eathdisyenbob, is 0
with probability p and 1 with probability - p, with p € [0, 1]. This is the sequence of biased (unfair) coin tosses;
it is very easy to see that= h, = H,/n = —[pIn p+ (1 — p) In (1 — p)] for everyn > 1, and the effective
measure complexity i€ = 0.

We have generated a sequercef 0's and 1’s of lengtlL 4 with a probabilityp 4 for 0’s, and then a set of 5000
sequences of lengthL g where 0’s occur with probability g. For these cases the relative entropy per character is
given byEg. (13) For each sequence of this set, the following numerical experiment has been performed:

1. A sequencdB (of lengthL 4 + L) is obtained appending th® sequence to the end of tesequence.
2. One starts scanning the sequeAgefrom the pointi = isiart = L4 + 1, i.e. from the first character of the
sequences.
3. One looks for the longest sub-sequence that:
(a) starts at;
(b) is identical to a sub-sequence contained in the par} fif the joint sequenc&B.
The length of this maximum sub-sequence is catiggk.
4. The index is increased bymax. If i < L4 + L g the algorithm goes to 3, otherwise the algorithm stops.

In the above procedure, one keeps track of the statistics of the sub-sequence matchings; in particular we are
interested in the number of sub-sequences found ior in B as a function ofLg. At the beginning of the
scanning procedure most of the matchings are found.ihen L is large enough, sub-sequence matchings
found in B can be competitive with their length against the ones found.iThe procedure of averaging over
many “realizations” of sequenc® allows for a smooth statistics, i.e. a smooth cuR(é. 4, L g) versusL g with
fixed L 4.

Fig. 1reports the curves obtained with the above procedur@fbr, L p) versusL p for different values of_ 4
and different choices of the paip, pp), as well as their collapse using the scaling funciip4). The collapse
is indeed very satisfying, bringing the first evidence for the conjectuf@4h In the picture is also shown the
failure of the scaling form when is too small pluses and crosses in the inset, not reported in the main plot).
This happens when the two sequences are too different or when the second sequence has an\eriromy;
in both cases the convenience of parsing the sub-sequenBasitf sub-sequences of its own past (and not from
A) comes too early, as can be seen in the inset of the figure. As a consequence of this, the ldndtle®hot
matter for the parsing of sequenBeand the two curves obtained with differeby (those witha = 0.156) are
identical.

5.2. Markovian sequences

The natural step after Bernoulli schemes, is a test using sequences generated by means of Markov chains. /
Markov chain is a random process with discrete states, where the probability of every state is determined by one or
more previous states. The order of Markov chains is the number of previous states influencing the present, e.g. foi
a Markov chain of ordet = 1 the probability of having a certain symbol depends only on the previous symbol and
is determined by its conditional probabili%y;j = P(o; = jlo;—1 = i). We have tested the scaling hypothesis on
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Fig. 1. Collapse ofP(L 4, L) versus the rescaled coordinate (discussed in the text), for different pairs of Bernoulli processes with different
probabilities of symbol “zerolp 4, p) and with different lengths 4 of buffer A. In the inset the same data are shown versgis.e. without any
rescaling. The values ofare the following: 0.643 fo(p, pg) = (0.3,0.7),0.768 for(p4, pp) = (0.4, 0.7), 0.892 for(p 4, pp) = (0.4,0.6),

0.156 for(pa, ps) = (0.1, 0.9).

the Lempel-Ziv parsing procedure of pairs of two symbols, order one, symmetric Markov chains. This means that
both A and B are sequences of 0’'s and 1's and that their transition matrix is of the form:

W=< w 1—w) (25)

1—w w

with w € [0, 1] the probability of repeating the previous symbol. The sequeAcasd B have different transition
matrices, i.ew = wy4 for A andw = wp for B. In practice a sequence obtained witmear 1 is something like
1111110000001111110000Q, while a sequence obtained withnear 0 is like 010101001010101101010.

For a Markov chain of order 1 one h&k, = H1 + (N — 1)h andC = H1 — h. Moreover we are interested in the
cross-entropy per charactex = Hy.1(B||A) — Hy(B| A) versusN, where, following the notation dfq. (14)

Hy=—3" ps(Cn) In pa(Cy) = Hy(B) + Diy(B|A). (26)
{Cn}*

where{Cy}* is the set ofN-sequences contained both Anand B. In formula (26) D}, (BJ||A) is given by the
definition (15) with the restriction that the sum runs only on tNesequences contained in bathand B. This
defines, coherently wit(il7), the limit 4*(B||A) = limy_ o 1/ND} (B| A). If we consider infinite sequences
and B and a two states Markov process (as the one introduced in this sectio{)(thgh= {Cy}, i.e. the whole
set of 2V sequences of lengtN is explored by both dynamics and therefd@® = Dy andd* = d. For the kind
of Markov chain described by the transition matrix#5), we can therefore calculate

Hy=H —(N-1 ) Pg(SHWy In Wi, (27a)
{SiS;}
hy = h(B||A) = h(A) + d(B||A) = — Z Pe(SHW In Wi, (27b)
{SiS;}

More in general the above formulas holdﬂf is positive WherWiJB is positive.

In Fig. 2we show the effects of finiteness of the sequentasdB oniy andh y; for finite sequences and B,
even in the case of two state Markov chains, the sets of words of Idhgthy not coincideA andB are sequences
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Fig. 2. Left: Hy — Hy—_1 versusN for a Markov process of order 1 with symmetrical transition matrix ee(25) calculated numerically
using a sequence of 20,000 symbols, for different values of the parametére plateau (reached At = 2) corresponds to the theoretidal
while the successive decay of the curves is due to poor statistics. Right: cross-énirepyily — Hy_1 for different pairs(A, B) of such
Markov processes, characterized by parameterswg. The plateaus (put in evidence by dashed lines) correspond to the theoretical value

of length 20,000 generated with the symmetric one-step Markov processes with different transition atriees
with different parameters 4 andw .

It can be seen that the plateau representing reached alv = 2, as expected for Markov chains of order
k = 1. Moreover, the effect of finite size can be seen: the sequences considered are 20,000 symbols long, therefore
invoking the Shannon—-McMillan theorem, one has tNatust not be too large in order to satisfy the condition
that the number of typicaV-sequences be much smaller than the length of the sequenadé @™ « 20,000.
Otherwise the statistics becomes too poor Apdapidly departs fronk. In the right plot ofFig. 2 we show the
behavior ofiy: the first plateau of the curves in this graph provides an estimate of the cross-elt&ipy).
This figure shows how finite size effects appear in the computatia@iRifA), well before those appearing in the
computation ofz; this is a direct consequence of the operative definition used in this computation: in order to have a
good estimate of y a large amount oV-sequences common bothAcand B is indeed needed, reducing the value
of the finite size cut-off. The scaling df(L 4, L p) for pairs of Markov sequences is showrfig. 3. Again a good

10° 100 100 100 10t 10’
L

) N L B R | I
10 -1 0 1 2

(n(Ly) - o InL))/(In(L,) + InLy)"*

Fig. 3. Collapse ofP(L 4, L) versus the rescaled coordinate for Markov processes of order 1 and symmetric transition makEtx (229
with different values of the pairaw 4, wg), with L4 = 20,000. In the figure are also indicated the values (gee(24)). In the inset the data
without rescaling.
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collapse is obtained using the previously proposed scaling (@4 It is also clear that the collapse fails for pairs
of processes withh « 1, i.e. the pairs with the strongest difference in the transition matrix.

5.3. Non-Markovian sequences: Lozi map symbolic dynamics

It is interesting to probe a class of signals (i.e. sequences) with a higher degree of complexity, i.e. large memory
and forbidden words. Chaotic dynamical systems are a rather natural source of such nontrivial signals. A symbolic
sequence can be associated to the dynamical system by means of a partition of the phage ispdeg} with
m elements such th&t)”” ; w; = £2 andw; N w; = 0 for everyi and in [1, m]. Every trajectoryx(r) is therefore
mapped into a sequence of symbols of tiv@lphabet. An interesting nontrivial example can be obtained with a
binary partition of thex variable of the Lozi map, defined as

x(n+1) = —alx(m)| + y(n) + 1, y(n +1) = bx(n), (28)

wherea andb are parameters. The sequence of symbols used in the following test is obtained taking:0when

and 1 whernx > 0. Forb = 0.5, numerical studies show that the Lozi map is chaotieforthe interval (1.51, 1.7).

For a discussion of the Lozi map, computation of Lyapunov exponents and representation of its symbolic dynamics
in terms of Markov chains, sdé7].

Fig. 4 reports the numerical computation &fy and Hy (the block entropy and the block cross-entropy) for
several sequence lengths, using always the same pair of prosgsses.56 andag = 1.52. The aim is putting in
evidence finite size effects as well as estimating Shannon and Kullback-Leibler entropies needed for the collapse
of P(L4, Lp). The estimate of(B||A) andh(B) and therefore of is obtained with a level of confidence of 10%.

Due to statistic effects, we measure the slopes of the curves (bofifiyfand Hy) in the range ofV where the
slope is constant, as already dond=ig. 2 Let us note that in the symbolic sequence generated by the Lozi map
there is also the problem of the lack of equivalence betwéan and{Cy}* (seeEq. (26). However one must
note that thedA + B zipping procedure used in our analysis finds only sequences contained iA laoihB. It is
natural, therefore, to measul¥, (which in this case is different fromy) and from this estimateg*.

Fig. 4is particularly enlightening from the point of view of the meaning of the effective measure complexity
defined inEq. (7) A naive order 1 Markovian approximation of the map is far from reproducing the dynamical
properties of the Lozi map. This can be appreciateéidn 4, noting thatC is not small.
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N A > dp - 683G%oo
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Fig. 4. Hy and Hy versusN for sequences gf symbols obtained with a binary partition of the Lozi mapHRhare calculated using Lozi map
with parameter: = 1.52 anda = 1.56. TheHy are calculated using pairs of Lozi map wiih = 1.56 andag = 1.52. All calculations have
been performed with sequences of different lengtlo probe finite size effects.
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Fig. 5. Collapse of’(L,4, L) versus the rescaled coordinate for sequences of symbols obtained with a binary partition of the Lozi map with
parameters pairGi4, ag) = (1.56, 1.52), using an estimate a@f = 0.78 obtained using the valuésB) = 0.15 andh = 0.19 (seeFig. 4 In
the inset the same data are shown vetsisi.e. without rescaling.

Finally, in Fig. 5it is shown that the collapse of the learning curvs, y) is very well verified, using again
averages on th& sequence (i.e. different initial conditions) and different lengths foraleequence. In this case
we have used*(B||A) instead ofi(B||A) to computey, i.e.:

h(B)

P — (29)
h(B) + d*(B|A)

6. An experiment of recognition

The last set of results concerns one of the main motivation of this analysis, i.e. its practical applications. The
algorithm proposed if23,25] has its main justification in its efficiency on the framework of sequence recognition:
the algorithm is able to provide an estimate of the Kullback—Leibler entropy of a sequence of unknown provenance
relatively to a set of sequences whose provenance is certain (known sources) and used as reference sequences, giv
the most “similar” sequence and therefore the most probable source for the sequence of unknown provenance. In thi
context, we have checked that this recipe well recognizes a symbolic sequence drawn from the class of Lozi maps
Though the results are very preliminary and a systematic analysis should be in order, some interesting conclusions
can be drawn.

Fig. 6reports the result of this test. A Lozi map with= 1.6, » = 0.5 and initial conditiont = 0.1, y = 0.1 has
been used to generate the sequenhad length 10,000, that will be used as unknown sequence. As probing sequences
we have generated two sets of sequendeand B*, respectively, obtained with Lozi maps with the parameters
b = 0.5andap = ap+ varying between 1.52 and 1.7. The sequertbsas length of 10,000 while sequengehas
length of 5000 or 1000. The quantities plotted in the inset are the lengths of the compressed code (with the LZ77
algorithm, see the discussion$ection 2, i.e. C(X) is the length of the code obtained by compressing the sequence
X. Data relative to the compression of the sequemc¢sB* andA + B* have been obtained by averaging over 100
different choices of initial conditions. The quantity computed and reported in the main graph is an estimate of the
Kullback-Leibler entropyl(B||A), as a difference (per bit) betweélA + B*) — C(A) andC(B + B*) — C(B)
which are the estimates of the block cross-entropy and of the entropy of B, respectively. The bottom plot shows
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Fig. 6. Estimate, by means of LZ77 compressionDgB||A) (see text) of the Kullback—Leibler entropy relative to different paits B) of
sequences of symbols: each pair is composed by a fixed seqaaitained as a binary partition of a Lozi map with paramefee= 1.6 and a
variable sequenckobtained either as a binary partition of a Lozi map with variable paramgt@he sequences have lendth = Lz = 10,000.

The estimate of the Kullback—Leibler entropy has its minimum in correspondence of thel pdiy (i.e. whenB comes from a Lozi map with

ap = au): this indicates that this estimate @f(B||A) is capable of recognizing in the space of Lozi maps. In the inset the lengths of
the LZ-compressed sequences are reported, whglis always a sequence of the same kindBofnote that(L 4)* ~ 1300 and therefore

L% = 1000, andL} = 5000 are below and beyond the cross-over threshold, respectively).

very well how this simple recipe leads to a perfect recognition of the correct value=cf.6: the estimate of the
Kullback-Leibler entropy has in fact an absolute minimum for that value.

In Fig. 6one can also appreciate the usefulness of the theoretical analgsstain 4i.e. the fact thafL 4)“ is
a good estimate of the best lendtly of the probe sequencésto obtain the optimal resolution in the recognition
process. In fact ifsection 4we conjectured (and successively verified with numerical experiments) thatiyhen
is smaller than the cross-over lengtlf{, the LZ77 algorithm is encoding the sequernavith the “language”
of A and therefore the length of the encoded sequence is effectively a measure of the distance between the two
languages. Using the previous value= 0.78 as a rough estimate for every other choice of the map parameter
and givenL 4 = 10,000, one obtains for the cross-over lengti1300. In the figure, the resolution power of the
LZ77 algorithm withL 3 = 1000 is much higher than that wiithy = 5000.

7. Conclusions

We have studied the properties of standard sequential compression algorithms in the problem of information
extraction from sequences of characters. We have in particular analyzed the learning process that these algorithm
perform when they are used to compress heterogeneous data, i.e. data coming from different sources.

The typical benchmark for this study is a finite sequence of L g symbols obtained appending a sequence
of L g symbols emitted by a sour@eto a sequence df 4 symbols emitted by a souree An algorithm like LZ77
[30], after having processed thepart of the sequence, starts encoding Bhgart using the knowledge acquired
while zipping theA part; after a transient the compression algorithm starts encodimgyghet using the knowledge
coming only from theB part already processed (i.e. the zipper starts learnin@ tbart). We have made a scaling
hypothesis that characterizes this transient process in terms of the entropy of thebsandabe Kullback—Leibler
divergence between the two sequences.

We have studied the finite size scaling (i.e. incorporating fluctuations due to the finite size of the sequences under
investigation) by means of numerical experiments on three sets of data coming from different sources: the Bernoulli



106 A. Puglisi et al./Physica D 180 (2003) 92-107

scheme, the Markov chain of first order (with symmetric transition matrix) and the symbolic dynamics obtained with
a binary partition of the Lozi map. These three examples feature an increasing complexity: the Bernoulli scheme
emits sequences of uncorrelated random symbols; the Markov chain of first order is the simplest way to enforce
correlations among symbols in the sequences; finally the Lozi map has the property of having an higher effective
measure complexit[83,34]. The scaling hypothesis is very well verified in all the cases investigated, pointing out
the generality of the result.

These results have a practical importance in the analysis of a recently proposed scheme that computes th
informational remoteness between two sequefi#dsin fact this scheme employs a variant of the LZ77 algorithm
and gives the best estimate of the remoteness (Kullback—Leibler divergence) when the length of the second sequenc
is chosen of the order of the threshold value of the learning function we have introduced in this work. We have
investigated quantitatively this point, showing that the resolution power of the recognition scheme propaskd in
is highly improved when the length of the second sequence is chosen according to the analysis of the transient
Sequences too short or too long can give bad estimates of the Kullback—Leibler divergence and therefore a big
uncertainty in the recognition of similar sequences.

Anotherimportantfield of application is that of the segmentation of heterogeneous sequences, i.e. the identification
of the boundaries between regions featuring very different properties which, depending on the sequences considere
can correspond to very different phenomena (catastrophic events in geophysical time series, or boundaries betwee
different sections in genetic sequences just to quote a couple of examples). In all these cases one could try to exploi
the features of data compression techniques at the interface between heterogeneous regions in order to define ai
optimize suitable observables sensitive to sudden changes.
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