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Abstract

We investigate the validity of +uctuation–dissipation relations for a mixture of two granular
gases with di-erent physical properties (restitution coe.cients or masses) subject to stochastic
driving. It is well known that the partial granular temperatures T1 and T2 of the two compo-
nents are di-erent, i.e., energy equipartition is broken. We observe, with numerical simulations
of inelastic hard disks in homogeneous and non-homogeneous situations, that the classical equi-
librium Green–Kubo relations are satis6ed separately for each component of the gas, the role
of the equilibrium temperature being played by the granular temperature of each component. Of
particular interest is the limit in which one of the two components consists of only one particle,
representing a non-perturbing thermometer. In this case it turns out that such a thermometer is
measuring its own temperature and not that of the surrounding granular media, which in general
will be di-erent.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Granular gases [1], i.e., gases of particles interacting through dissipative collisions,
represent an important paradigm for the study of non-equilibrium stationary states.
Due to the dissipative nature of the interactions, granular gases have to be con-
sidered as open systems and therefore concepts from equilibrium thermodynamics
cannot be applied, at least in a straightforward way. However, by analogy with molec-
ular gases, a “granular temperature” Tg can be de6ned in terms of the kinetic energy
per particle. If the system is driven by an external energy input a stationary state is
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reached: Tg +uctuates around a given value, while a +ux of energy from the driving
source goes into the system and is dissipated through inelastic collisions. Experiments,
theory and simulations have recently shown that in a mixture of di-erent grains, as soon
as the inter-particle collisions dissipate energy, the equipartition of energy among the
mixture components is lost [2–12] even in the tracer limit [13]. Although in sharp con-
trast with the behavior of molecular gases at equilibrium, this violation is not surprising
because in a generic open system the equipartition of energy is not expected. However,
it is natural to ask whether Tg could have some di-erent “equilibrium” meaning, or if it
is just a measure of velocity +uctuations. A hallmark of equilibrium phenomena is the
well-known +uctuation dissipation theorem (FDT), relating the response of a system
to a perturbation to the corresponding correlation function measured in the unperturbed
system: the response of an observable B at time t to an impulsive perturbation hA at
time t = 0 can be obtained as

�〈B〉
�hA

= − 1
T
9
9t 〈B(t)A(0)〉 ; (1)

where A is the observable conjugated to hA and T is the equilibrium temperature
of the system (brackets denote averaging over thermal history). A recent investiga-
tion has shown that, for non-equilibrium monodisperse driven granular gases, this
relation is still obeyed if the equilibrium temperature is replaced by the granular
temperature [14].
A natural question then arises: what happens to the relation (1) in a mixture which

displays more than one granular temperature? In this letter, we will address this ques-
tion in the case of a binary mixture subject to a homogeneous driving. It turns out
that each species obeys an FDT relation with its own granular temperature 1 as pro-
portionality factor. This result is particularly relevant to experiments where a tracer,
immersed in the granular gas and acting as a probe (and in particular as a thermome-
ter), may have di-erent physical properties with respect to the surrounding gas [16,17].
In equilibrium measurements, the temperature does not depend on the thermometer. For
granular materials, instead, the thermometer measures its own temperature, in general
di-erent from that of the surrounding gas.

2. Model

We consider a volume V containing a mixture of N =N1 +N2 inelastic hard spheres
(IHS) in dimension d = 2, N1 and N2 being the number of particles in component
1 and 2 of the mixture, respectively. The spheres have diameters � (identical for the
two species) and masses msi (where 16 i6N and si is the species index, 1 or 2,
of particle i). In a collision between spheres i and j, characterized by the inelasticity

1 There exist in fact small, but systematic, deviations from FD relations even at small inelasticities. These
deviations appear even at the homogeneous Boltzmann level (investigated by DSMC), where they are linked
to the non-Gaussian behaviour of the velocity distribution due to the departure from equilibrium [15]. The
departure from (1) will be studied in a separate publication.
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parameter called coe.cient of normal restitution �sisj , the pre-collisional velocity of
particle i, vi, is transformed into the post-collisional velocity v′i such that

v′i = vi −
msj

msi + msj
(1 + �sisj)(�̂ · vij)�̂ ; (2)

where vij=vi−vj and �̂ is the center to center unit vector from particle i to j (�sisj=�sjsi
so that the total linear momentum msivi+msjvj is conserved). The granular temperature
of species s is given by its mean kinetic energy Ts = 〈msv2s 〉=d.
The loss of energy due to collisions can be compensated in various ways. In ex-

periments the energy is typically supplied at the boundaries, leading the system to a
heterogeneous stationary state [3–5,18]. In order to avoid the complication of strong
temperature heterogeneities, we will use a homogeneous driving in the form of a “ther-
mostat”: in this mechanism (which recently has attracted the attention of many theorists
[19–25]), the particles are submitted, between collisions, to a random force in the form
of an uncorrelated white noise (e.g. Gaussian) with the possible addition of a viscous
term. The equation of motion for a particle is then

mi
dvi
dt

= Fi + miRi − �vi ; (3)

where Fi is the force due to inelastic collisions, � is the viscosity coe.cient and
〈Ri�(t)Rj�(t′)〉 = �20�ij����(t − t′), where Greek indexes refer to Cartesian coordinates.
It is also possible to use a deterministic thermostat. See e.g. [26].
At the level of Boltzmann kinetic equation, the temperature ratio of a binary granular

mixture subject to stochastic driving of the form given above has been obtained in [7]
for the case �= 0 and in [11] for � �= 0.

3. Methods

We have used two di-erent simulation methods: the direct simulation Monte Carlo
(DSMC) [27,28] which neglects pre-collisional correlations and therefore enforces the
molecular chaos hypothesis (factorization of the two-particles distribution functions)
and molecular dynamics (MD) simulations. The DSMC algorithm can be used to sim-
ulate the homogeneous Enskog–Boltzmann equation, i.e., any particle can collide with
any other in the whole volume V , or to simulate an a priori non-homogeneous system,
by dividing the space into small cells (of linear size smaller than the mean free path)
and enforcing molecular chaos in every single cell. On the other hand, MD simulations
integrate the equations of motion of the IHS: in this case we consider N hard spheres
in a square box of linear size L =

√
V , with periodic boundary conditions, random

initial velocities, and we use an event-driven algorithm to study their dynamics. All
the investigation methods used have shown similar results. We have used sizes N=500
to 5000, and averaged over up to 10 000 realizations of the dynamics.
Our analyses relies on two sets of independent measurements, i.e., two choices of

the pair response–correlation to be measured. The 6rst one consists of a measure of
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mobility and di-usivity. The mean-square displacement (MSD) for each species,

B1(2)(t; t′) =
1

dN1(2)

N1(2)∑
j=1

〈|rj(t) − rj(t′)|2〉 (4)

behaves as ∼ 4D1(2)(t − t′) for large time di-erences. The mobility of a tracer particle
is measured by applying a constant and small 2 drag force � = �ex to a given particle,
labeled 0, for times t ¿ t′. Due to the viscosity induced by the collisions with other
particles, the perturbed particle will reach at large times a constant velocity �, related
to the response by

�1;2(t; t′) =
1
�
〈(r0(t) − r0(t′)) · ex〉 ≈ �t; at large t : (5)

By successively using as test particle one particle of each species, one obtains the
two responses �1 and �2, and thus the mobilities �1 and �2. Two Einstein relations
(�i = 2Di=Ti) can then be checked, e.g. by plotting �i vs. Bi.
Another totally independent way of checking +ucuation dissipation (FD) relations in

granular gases has also been used in [14]: once a steady-state has been reached, the
system is perturbed impulsively at a given time t0 by a non-conservative force applied
(non-uniformly) on every particle (we will take t0 = 0 without loss of generality). The
response is then monitored at later times. The force acting on particle i is

F(ri ; t) = �i�(ri ; t) (6)

with the properties ∇×� �= 0, ∇ ·�=0, where �i is a particle dependent variable with
randomly assigned ±1 values. A simple case is realized by a transverse perturbation
�(r; t)=(0; � cos(kxx)�(t−t0)) (see footnote 2), where kx is compatible with the periodic
boundary conditions, i.e., kx =2!nk=Lx with nk integer and Lx the linear horizontal box
size. The staggered response function (i.e., the current induced at t by the perturbation
at t0), and the conjugated correlation,

R(t; t0) =
1
�

〈∑
i

�iẏ i(t) cos(kxxi(t))

〉
;

C(t; t0) =

〈∑
i

ẏ i(t)ẏ i(t0) cos{kx[xi(t) − xi(t0)]}
〉

are related, at equilibrium, to the correlation by the FD relation R(t; t0)= (�=2)C(t; t0),
T = 1=� being the equilibrium temperature.
Puglisi et al. [14] have shown the validity of this relation in the context of a monodis-

perse granular media heated by a thermal bath with temperature Tb, reaching in this
way a stationary state with granular temperature Tg ¡Tb. In this case the FD relation
holds by replacing T with Tg. For a binary mixture, two sets (Ci; Ri) (i = 1; 2) of
correlation and response are measured separately, thus obtaining two plots Ci vs. Ri.

2 We have checked the linearity of the response by changing the amplitude of the perturbation.
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There are di-erent reasons to test various pairs of response and correlation functions.
First, at equilibrium FDT links any couple of conjugated correlation and response
function with the same temperature. Out of equilibrium, it is possible, a priori, that
FDT could be valid for some observables and not for others. Moreover, mean square
displacement and mobility correspond to the exploration of the long time regime, while
Ci and Ri decay quickly (a few collisions per particle) and therefore yield the short
time behavior. FDT could be valid in some time regimes and not in others. It must
also be stressed that the measure of di-usion and mobility requires large times, so that
averaging over many realizations becomes computationally very demanding and less
precision is numerically available. In MD simulations in particular we have measured
only the relation between Ci and Ri.

4. Results

In all the simulations performed (MD and DMSC) the values of the temperature
ratios T1=T2 obtained are in good agreement with Ref. [7]. This is not surprising for
homogeneous DSMC, while it is less obvious in MD (the agreement is mostly due to
the low packing fraction n used).

4.1. FD ratio for the di=erent components

The measures of Bi(t) and �i(t) allow us to check the linearity with t at large times:
Bi(t) ≈ 4Dit and �i(t) ≈ �it. Moreover, Figs. 1 and 2 clearly show that the Einstein
relations are obeyed separately by the two components of the mixture, each with its
own temperature: to the numerical accuracy one obtains �i(t)= (1=2Ti)Bi(t). Note that
mobilities and di-usion coe.cients of each species are di-erent from their value in
a monodisperse case. We have considered various values of inelasticities, mass ratios,
number density ratios, and kinds of thermostat, obtaining that this result is robust with
respect to all these variations. We also note that a recent study [15] has shown that
the Einstein relation is not valid in its usual form in the case of an impurity immersed
in an homogeneously cooling granular: the main reason is that extra terms arise due to
the evolution of the granular temperature with time. Since we are here concerned with
steady-states, these extra terms are not present in the case studied. The other source
of deviations, namely the deviation from Gibbs state, leads to small deviations [15]
that could be di.cult to detect (see footnote 1).
We now turn to the measure of Ri(t) and Ci(t). Technical details of the numerical

procedure to perform this measure are given in Ref. [14]. From the de6nitions of �,
Ci and Ri, it is clear that Ri(0)=1=(2mi), and Ci(0)= 〈v2i 〉=Ti=mi. On the other hand,
limt→∞Ri(t)= limt→∞Ci(t)=0. Thus we have plotted in Fig. 3 the functions 2miRi(t)
vs. miCi(t). The FD relation Ri(t) = (1=2T )Ci(t) is veri6ed replacing T by the partial
granular temperature T1 and T2 of each component. The same result holds for di-erent
nk (nk �= 0 in order to satisfy the properties of the perturbing force (6)).
The MD simulations (whose results are reported in Fig. 3) are more realistic since

they include excluded volume e-ects and collision-induced correlations (which break
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Fig. 1. Random force (�= 0), homogeneous DSMC: mobilities �1;2 vs. MSD B1;2, (a) �11 = 0:3, �12 = 0:5,
�22 = 0:7, m2 = 3m1, T1 ≈ 0:2, T2 ≈ 0:38, (b) �11 = �12 = �22 = 0:9, m2 = 5m1, T1 ≈ 0:035, T2 ≈ 0:05.
Symbols are numerical data, lines have slope 1=(2T1) and 1=(2T2).
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Fig. 2. Random force (� = 0), DSMC with cells: mobilities �1;2 vs. MSD B1;2, (a) �11 = 0:3, �12 = 0:5,
�22 = 0:7, m2 = 3m1, T1 ≈ 0:1, T2 ≈ 0:185, (b) �11 = �12 = �22 = 0:9, m2 = 5m1, T1 ≈ 0:064, T2 ≈ 0:09.
Symbols are numerical data, lines have slope 1=(2T1) and 1=(2T2).

the molecular chaos hypothesis, see for example [22]). However, at not too high pack-
ing fractions, we still observe the same results for FD relations. Larger packing fractions
lead to strong heterogeneities in both density and granular temperature, giving rise to
deviations from FD (see footnote 1).

4.2. FD ratio for the whole system

An interesting question concerns what happens to the FD ratio when measured for the
whole system and not separately for the di-erent components of the mixture. In other
words, one could ask whether one can de6ne an e-ective temperature for the whole
system and what is the relation of this temperature with the temperatures de6ned above
for the two components of the mixture, or with the global temperature: T =x1T1+x2T2

(where x1;2 = N1;2=N ).
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Fig. 3. Random force (i.e., �= 0), DSMC with cells, and MD: 2miRi(t) vs. miCi(t) (i= 1; 2). Here nk = 4.
Ci(0) = Ti=mi , Ri(0) = 1=(2mi). In all cases the circles correspond to the FD plot for the Type 1 particles,
the pluses to the FD plot for Type 2 particles. Straight lines have slope 1=T1, dashed lines have slope
1=T2. Top: DSMC simulations, (a) �11 = 0:3, �12 = 0:5, �22 = 0:7, m2 = 3m1, T1 ≈ 0:09, T2 ≈ 0:18,
(b) �11 = �12 = �22 = 0:7, m2 = 5m1, T1 ≈ 0:16, T2 ≈ 0:35; Bottom: MD simulations, with n = 0:1,
(c) N1=N2, �11=0:7, �12=0:8, �22=0:9, m2=3m1, T1 ≈ 0:75, T2 ≈ 1:22, (d) N1=9N2; �11=�12=�22=0:9,
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A global measure would give, for the mean-square displacement

B(t) = x1B1(t) + x2B2(t) (7)

and for the response

�(t) = x1�1(t) + x2�2(t) : (8)

Using the previously checked result that �i(t) ≈ �it and Bi(t) ≈ 4Dit, one obtains
that B(t) ≈ 4Dt and �(t) ≈ �t, with D=x1D1 +x2D2 and �=x1�1 +x2�2. The Einstein
relation for the global case thus reads,

2D
�

=
(x1D1 + x2D2)T1T2

x1D1T2 + x2D2T1
; (9)

It is clear that the ratio 2D=� corresponds to the global granular temperature only when
T1 = T2, i.e., when equipartition is satis6ed. In Fig. 4 we present evidences supporting
this view.
Another way to consider the problem is to look at the ratio between R(t)=x1R1(t)+

x2R2(t) and C(t)=x1C1(t)+x2C2(t). In this case the impossibility to de6ne an e-ective
temperature re+ects itself in the non-constant ratio between C(t) and R(t), as we show
in Fig. 5.
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It should be remarked how these properties of the global FD ratio allow us to
make the following prediction. Suppose to perform a global measurement of the FD
ratio on a system of unknown composition. A global measurement on a monodisperse
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system would yield a well de6ned FD ratio and a well de6ned temperature equal to
the granular temperature, independently of the observable used (see [14]). On the other
hand a polydisperse system would feature a typically non-constant FD ratio, function
also of the observable (unless the system is completely elastic).

4.3. The single tracer case

Finally we investigate the special case N2 = 1, i.e., the case of a single tracer,
immersed in a granular gas of N = N1 di-erent particles, acting as a non-perturbing
thermometer. Fig. 6 reports the corresponding results. It turns out that, due to the
inelasticity of collisions [13], the tracer reaches a granular temperature di-erent from
that of the surrounding particles. Measuring a FD relation thus yields the granular
temperature of the tracer but not that of the surrounding granular gas. The tracer is thus
sensing a temperature whose value is the outcome of the complex interaction between
the tracer itself and the granular gas. It is worth stressing how this happens even if the
tracer almost does not perturb the granular. This leads to the non-conventional result
that the “temperature” measured as a +uctuation–dissipation ratio (see footnote 1), in
a driven granular gas, depends on the thermometer.

5. Conclusions

In this paper, we have shown by numerical simulations that, in a binary granular gas,
each component of the mixture obeys a FD relation with its own granular temperature,
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while a global measurement provides a suitable de6nition of temperature only when
equipartition is satis6ed. These FD relations can be measured by di-erent correlation–
response pairs. In particular, the case of a tracer, which can act as a “thermometer”
since it does not perturb the granular, has been investigated, and leads to the unusual
conclusion that the measure of the temperature through FD relations would depend on
the interaction between the tracer and the granular gas. Notice that theoretical studies
(see e.g. [7]) may then allow for an estimate of the gas temperature, knowing the
temperature measured by the tracer. Further investigations are needed to explore the
scenarios bringing to violations of the FD relations (see footnote 1). This point becomes
particularly important when, with more realistic energy injection through boundaries,
we could expect heterogeneities giving rise to position-dependent temperatures. It would
be interesting to investigate how a tracer particle would sample this inhomogeneous
gas and ask about the meaning of the corresponding measured temperature.
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