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Abstract. In this paper we exploit concepts of information theory to address
the fundamental problem of identifying and defining the most suitable tools for
extracting, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a crucial
way data compression techniques in order to define a measure of remoteness
and distance between pairs of sequences of characters (e.g. texts) based on their
relative information content. We also discuss in detail how specific features of
data compression techniques could be used to introduce the notion of dictionary
of a given sequence and of artificial text and we show how these new tools can
be used for information extraction purposes. We point out the versatility and
generality of our method that applies to any kind of corpora of character strings
independently of the type of coding behind them. We consider as a case study
linguistic motivated problems and we present results for automatic language
recognition, authorship attribution and self-consistent classification.
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1. Introduction

One of the most challenging issues of recent years is presented by the overwhelming mass
of available data. While this abundance of information and the extreme accessibility
of it represents an important cultural advance, it raises on the other hand the problem
of retrieving relevant information. Imagine entering the largest library in the world,
seeking all relevant documents on your favourite topic. Without the help of an efficient
librarian this would be a difficult, perhaps hopeless, task. The desired references would
probably remain buried under tons of irrelevancies. Clearly the need for effective tools for
information retrieval and analysis is becoming more urgent as the databases continue to
grow.

First of all let us consider some among the possible sources of information. In Nature
many systems and phenomena are often represented in terms of sequences or strings of
characters. In experimental investigations of physical processes, for instance, one typically
has access to the system only through a measuring device which produces a time record
of a certain observable, i.e. a sequence of data. On the other hand other systems are
intrinsically described by strings of characters, e.g. DNA and protein sequences, language.

When analysing a string of characters the main aim is to extract the information it
provides. For a DNA sequence this would correspond, for instance, to the identification
of the subsequences codifying the genes and their specific functions. On the other hand
for a written text one is interested in questions like recognizing the language in which the
text is written, its author or the subject treated.

One of the main approaches to this problem, the one we address in this paper, is that
of information theory (IT) [1, 2] and in particular the theory of data compression.
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In a recent letter [3] a method for context recognition and context classification
of strings of characters or other equivalent coded information has been proposed. The
remoteness between two sequences A and B was estimated by zipping a sequence A + B
obtained by appending the sequence B after the sequence A and exploiting the features of
data compression schemes like gzip (whose core is provided by the Lempel–Ziv 77 (LZ77)
algorithm [4]). This idea was used for authorship attribution and, by defining a suitable
distance between sequences, for languages phylogenesis.

The idea of appending two files and zipping the resulting file in order to measure the
remoteness between them had been previously proposed by Loewenstern et al [5] (using
zdiff routines) who applied it to the analysis of DNA sequences, and by Khmelev [6] who
applied the method to authorship attribution. Similar methods have been proposed by
Juola [7], Teahan [8] and Thaper [9].

In this paper we extend the analysis of [3] and we describe in detail the methods used
to define and measure the remoteness (or similarity) between pairs of sequences based on
their relative informatic content. We devise in particular, without loss of generality with
respect to the nature of the strings of characters, a method for measuring this distance
based on data compression techniques.

The principal tool for the application of these methods is the LZ77 algorithm, which,
roughly speaking, achieves the compression of a file exploiting the presence of repeated
subsequences. We introduce (see also [10]) the notion of the dictionary of a sequence,
defined as the set of all the repeated substrings found by LZ77 in a sequential parsing of
a file, and we refer to these substrings as the dictionary’s words. Besides being of great
intrinsic interest, every dictionary allows for the creation of artificial texts (AT) obtained
by the concatenation of random extracted words. In this paper we discuss how comparing
AT, instead of the original sequences, could represent a valuable and coherent tool for
information extraction to be used in very different domains. We then propose a general AT
comparison scheme (ATC) and show that it yields to remarkable results in experiments.

We have chosen for our tests some textual corpora and we have evaluated our method
on the basis of the results obtained on some linguistic motivated problems. Is it possible
to automatically recognize the language in which a given text is written? Is it possible to
automatically guess the author and the subject of a given text? And finally is it possible
to define methods for the automatic classification of the texts of a given corpus?

The choice of the linguistic framework is justified by the fact that this is a field where
anybody could be able to judge, at least partially, the validity and the relevance of the
results. Since we are introducing techniques for which a benchmark does not exist it is
important to check their validity with known and controlled examples. This does not mean
that the range of applicability is reduced to linguistics. On the contrary the ambition is
to provide physicists with tools which could parallel other standard tools for analysing
strings of characters.

In this perspective it is worthwhile recalling here some of the latest developments
of sequence analysis in physics related problems. A first field of activity [11, 12] is
that of segmentation problems, i.e. cases in which a unique string must be partitioned
into subsequences according to some criteria to identify discontinuities in its statistical
properties. A classical example is that of the separation of coding and non-coding portions
in the DNA but the analysis of genetic sequences in general represents a very rich source
of segmentation problems (see, for instance, [10], [13]–[15]).
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A more recent area is represented by the use of data compression techniques to
test specific properties of symbolic sequences. In [16], the technology behind adaptive
dictionary data compression algorithms is used in a suitable way (which is very close
to our approach) as an estimate of reversibility of time series, as well as a statistical
likelihood test. Another interesting field is related to the problem of the generation of
random numbers. In [17] the importance of suitable measures of conditional entropies,
in order to check the real level of randomness of random numbers, is outlined and an
entropic approach is used to discuss some random number generator shortcomings (see
also [18]).

Finally, another area of interest is represented by the use of data compression
techniques to estimate entropic quantities (e.g. Shannon entropy, algorithmic complexity,
Kullback–Leibler divergence). Even though not new this area is still topical [19, 20].
A specific application that has generated an interesting debate concerns the analysis
of electroencephalograms of epilepsy patients [21]–[23]. In particular in these papers
it is argued that measures like the Kullback–Leibler divergence could be used to spot
information in medical data. The debate is wide open.

The outline of the paper is as follows. In section 2, after a short theoretical
introduction, we recall how data compression techniques could be used to evaluate entropic
quantities. In particular we recall the definition of the LZ77 [4] compression algorithm
and we address the problem of using it to evaluate quantities like the relative entropy of
two generic sequences as well as to define a suitable distance between them. In section 3
we introduce the concept of artificial text (AT) and present a method for information
extraction based on artificial text comparison. Sections 4 and 5 are devoted to the
results obtained with our method in two different contexts: the recognition and extraction
of linguistic features (section 4) and the self-consistent classification of large corpora
(section 5). Finally section 6 is devoted to the conclusions and to a short discussion
about possible perspectives.

2. Complexity measures and data compression

Before entering into the details of our method let us briefly recall the definition of entropy
of a string. Shannon’s definition of information entropy is indeed a probabilistic concept
referring to the source emitting strings of characters.

Consider a symbolic sequence (σ1 σ2 · · ·), where σt is the symbol emitted at time t and
each σt can assume one of m different values. Assuming that the sequence is stationary
we introduce the N -block entropy:

HN = −
∑

{WN}

p(WN) ln p(WN) (1)

where p(WN) is the probability of the N -word WN = (σt σt+1 · · · σt+N−1), and ln = loge.
The differential entropies

hN = HN+1 − HN (2)

have a rather obvious meaning: hN is the average information supplied by the (N + 1)th
symbol, provided the N previous ones are known. Noting that the knowledge of a longer
past history cannot increase the uncertainty in the next outcome, one has that hN cannot
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increase with N , i.e. hN+1 ≤ hN . With these definitions the Shannon entropy for an
ergodic stationary process is defined as

h = lim
N→∞

hN = lim
N→∞

HN

N
. (3)

It is easy to see that for a kth-order Markov process (i.e. one such that the
conditional probability of having a given symbol only depends on the last k symbols,
p(σt|σt−1 σt−2, . . .) = p(σt|σt−1 σt−2, . . . , σt−k)), we have hN = h for N ≥ k.

The Shannon entropy h measures the average amount of information per symbol
and it is an estimate of the ‘surprise’ the source emitting the sequence reserves to us.
It is remarkable that, under rather natural assumptions, the entropy HN , apart from a
multiplicative factor, is the unique quantity which characterizes the ‘surprise’ of the N -
words [24]. Let us try to explain in which sense entropy can be considered as a measure of
surprise. Suppose that the surprise one feels upon learning that an event E has occurred
depends only on the probability of E. If the event occurs with probability 1 (sure) our
surprise at its occurring will be zero. On the other hand if the probability of occurrence
of the event E is quite small our surprise will be proportionally large. For a single event
occurring with probability p the surprise is proportional to ln p. Let us consider now a ran-
dom variable X, which can take N possible values x1, . . . , xN with probabilities p1, . . . , pN ;
the expected amount of surprise we shall experience upon learning the value of X is given
precisely by the entropy of the source emitting the random variable X, i.e. −

∑
pi ln pi.

The definition of entropy is closely related to a very old problem, that of transmitting
a message without losing information, i.e. the problem of efficient encoding [25].

A good example is the Morse code. In the Morse code a text is encoded with two
characters: line and dot. What is the best way to encode the characters of the English
language (provided one can define a source for English) with sequences of dots and lines?
The idea of Morse was to encode the more frequent characters with the minimum number
of characters. Therefore ‘e’ which is the most frequent English letter is encoded with one
dot (·), while the letter q is encoded with three lines and one dot (−− ·−).

The problem of the optimal coding for a text (or an image or any other kind of informa-
tion) has been enormously studied. In particular, Shannon [1] showed that there is a limit
on the possibility of encoding a given sequence. This limit is the entropy of the sequence.

This result is particularly important when the aim is the measure of the information
content of a single finite sequence, without any reference to the source that emitted it.
In this case the reference framework is the algorithmic complexity theory and the basic
concept is Chaitin–Kolmogorov entropy or algorithmic complexity (AC) [26]–[29]: the
entropy of a string of characters is the length (in bits) of the smallest program which
produces as output the string and stops afterwards. This definition is really abstract. In
particular it is impossible, even in principle, to find such a program and as a consequence
the algorithmic complexity is a non-computable quantity. This impossibility is related to
the halting problem and to Godel’s theorem [30].

It is important to recall that there exists a rather important relation between the
algorithmic complexity KN(WN ) of a sequence WN of N characters and HN :

1

N
〈KN〉 =

1

N

∑

WN

KN(WN )P (WN)−−→
N→∞

h

ln 2
(4)

where KN is the binary length of the shorter program needed to specify the sequence WN .
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qwhhABCDhh(6,4)z(11,6)z...

Original sequence

Zipped sequence

qwhhABCDhhABCDzABCDhhz...

Figure 1. Scheme of the LZ77 algorithm: the LZ77 algorithm works sequentially
and at a generic step looks in the look-ahead buffer for substrings already
encountered in the buffer already scanned. These substrings are replaced by
a pointer (d, n) where d is the distance of the previous occurrence of the same
substring and n is its length. Only strings longer than two characters are replaced
in the example.

As a consequence there exists a relation between the maximum compression rate of a
sequence (σ1 σ2 · · ·) expressed in an alphabet with m symbols, and h. If the length N of
the sequence is large enough, then it is not possible to compress it into another sequence
(with an alphabet with m symbols) whose size is smaller than Nh/ ln m. Therefore, noting
that the number of bits needed for a symbol in an alphabet with m symbols is ln m, one
has that the maximum allowed compression rate is h/ lnm [1].

Though the maximal theoretical limit of the algorithmic complexity is not achievable,
there are nevertheless algorithms explicitly conceived to approach it. These are the file
compressors or zippers. A zipper takes a file and tries to transform it into the shortest
possible file. Obviously this is not the best way to encode the file but it represents a good
approximation to it.

A great improvement in the field of data compression has been represented by
the Lempel and Ziv algorithm (LZ77) [4] (used for instance by gzip and zip). It is
interesting to briefly recall how it works (see figure 1). Let x = x1, . . . , xN be the
sequence to be zipped, where xi represents a generic character of a sequence’s alphabet.
The LZ77 algorithm finds duplicated strings in the input data. The second occurrence
of a string is replaced by a pointer to the previous string given by two numbers: a
distance, representing how far back into the window the sequence starts, and a length,
representing the number of characters for which the sequence is identical. More specifically
the algorithm proceeds sequentially along the sequence. Let us suppose that the first n
characters have been codified. Then the zipper looks for the largest integer m such that the
string xn+1, . . . , xn+m already appeared in x1, . . . , xn. Then it codifies the string found
with a two-number code composed by: the distance between the two strings and the
length m of the string found. If the zipper does not find any match then it codifies the
first character to be zipped, xn+1, with its name. This eventuality happens for instance
when codifying the first characters of the sequence, but this event becomes very infrequent
as the zipping procedure goes on.

This zipper is asymptotically optimal: i.e. if it encodes a text of length L emitted
by an ergodic source whose entropy per character is h, then the length of the zipped file
divided by the length of the original file tends to h when the length of the text tends to
∞. The convergence to this limit is slow and the corrections has been shown to behave
as O( log log L

log L
) [31].
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Usually, in commercial implementations of LZ77 (for instance gzip), substitutions are
made only if the two identical sequences are not separated by more than a certain number
nw of characters, and the zipper is said to have an nw-long sliding window. The typical
value of nw is 32 768. The main reason for this restriction is that the search in very large
buffers could be inefficient from the computational time point of view.

Just to give an example: if one compresses an English text the length of the zipped
file is typically of the order of a quarter of the length of the initial file. An English file is
encoded with 1 byte (8 bits) per character. This means that after the compression the file
is encoded with about 2 bits per character. Obviously this is not yet optimal. Shannon
with an ingenious experiment showed that the entropy of the English text is between 0.6
and 1.3 bits per character [32] (for a recent study see [19]).

It is well known that compression algorithms represent a powerful tool for the
estimation of the AC or more sophisticated measures of complexity [33]–[37] and several
applications have been found in several fields [38] from dynamical systems theory (the
connections between information theory and dynamical systems theory are very strong and
go back all the way to Kolmogorov and Sinai [39, 40]; for a recent overview see [41]–[43])
to linguistics (an incomplete list would include [3], [6]–[9], [44]–[48]), genetics (see [5, 10],
[49]–[52] and references therein) and music classification [53, 54].

2.1. Remoteness between two texts

It is interesting to recall the notion of relative entropy (or Kullback–Leibler
divergence [55]–[57]) which is a measure of the statistical remoteness between two
distributions and whose essence can be easily grasped with the following example.

Let us consider two stationary zero-memory sources A and B emitting sequences of 0
and 1: A emits a 0 with probability p and 1 with probability 1 − p while B emits 0 with
probability q and 1 with probability 1− q. As already described, a compression algorithm
like LZ77 applied to a sequence emitted by A will be asymptotically (i.e. in the limit of
an available infinite sequence) able to encode the sequence almost optimally, i.e. coding
on average every character with −p log2 p− (1− p) log2(1− p) bits (the Shannon entropy
of the source). This optimal coding will not be the optimal one for the sequence emitted
by B. In particular the entropy per character of the sequence emitted by B in the coding
optimal for A (i.e. the cross-entropy per character) will be −q log2 p− (1− q) log2(1− p)
while the entropy per character of the sequence emitted by B in its optimal coding is
−q log2 q − (1 − q) log2(1− q). The number of bits per character wasted in encoding the
sequence emitted by B with the coding optimal for A is the relative entropy of A and B,

d(A||B) = −q log2

p

q
− (1 − q) log2

1 − p

1 − q
. (5)

A linguistic example will help to clarify the situation: transmitting an Italian text
with a Morse code optimized for English will result in the need for transmitting an extra
number of bits with respect to another coding optimized for Italian: the difference is a
measure of the relative entropy of, in this case, Italian and English (supposing the two
texts are each archetypal representations of their language, which they are not).

We should remark that the relative entropy is not a distance (metric) in the
mathematical sense: it is neither symmetric, nor does it satisfy the triangle inequality.
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As we shall see below, in many applications, such as phylogenesis, it is crucial to define a
true metric that measures the actual distance between sequences.

There exist several ways to measure the relative entropy (see for instance [35]–[37]).
One possibility is of course to follow the recipe described in the previous example: using
the optimal coding for a given source to encode the messages of another source.

Here we follow the approach recently proposed in [3] which is similar to the approach
of Ziv and Merhav [36]. In particular in order to define the relative entropy of two sources
A and B we consider a sequence A from the source A and a sequence B from the source B.
We now perform the following procedure. We create a new sequence A+B by appending
B after A and use the LZ77 algorithm or, as we shall see below, a modified version of it.

In [11] there was a detailed study of what happens when a compression algorithm tries
to optimize its features at the interface between two different sequences A and B while
zipping the sequence A + B obtained by simply appending B after A. In particular the
existence of a scaling function ruling the way the compression algorithm learns a sequence
B after having compressed a sequence A has been shown. In particular it turns out that
there exists a crossover length for the sequence B, given by

L∗
B � Lα

A (6)

with α = h(B)/(h(B) + d(B||A)). This is the length below which the compression
algorithm does not learn the sequence B (measuring in this way the cross-entropy of
A and B) and above which it learns B, i.e. optimizes the compression using the specific
features of B.

This means that if B is short enough (shorter than the crossover length), one can
measure the relative entropy by zipping the sequence A + B (using gzip or an equivalent
sequential compression program); the measure of the length of B in the coding optimized
for A will be ∆AB = LA+B − LA, where LX indicates the length in bits of the zipped file
X. The cross-entropy per character of A and B will be estimated by

C(A|B) = ∆AB/|B|, (7)

where |B| is the length in bits of the uncompressed file B. The relative entropy d(A||B)
per character of A and B will be estimated by

d(A||B) = (∆AB − ∆B′B)/|B|, (8)

where B′ is a second sequence extracted from the source B with |B′| characters and
∆B′B/|B| = (LB+B′ − LB)/|B| is an estimate of the entropy of the source B.

If, on the other hand, B is longer than the crossover length we must change our
strategy and implement an algorithm which does not zip the B part but simply ‘reads’
it with the (almost) optimal coding of part A. In this case we start reading sequentially
file B and search in the look-ahead buffer of B for the longest subsequence that already
occurred only in the A part. This means that we do not allow for searching matches inside
B itself. As in the usual LZ77, every matching found is replaced with a pointer indicating
where, in A, the matching subsequence appears and its length. This method allows us to
measure (or at least to estimate) the cross-entropy of B and A, i.e. C(A|B).

Before proceeding let us briefly discuss what difficulties one could experiment on in the
practical implementation of the methods described in this section. First of all in practical
applications the sequences to be analysed can be very long and their direct comparison
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can then be problematic due to finiteness of the window over which matching can be
found. Moreover in some applications one is interested in estimating the self-entropy of
a source, i.e. C(A|A), in a more coherent framework. The estimation of this quantity is
necessary for calculating the relative entropy of two sources. In fact, as we shall see in the
next section, even though in practical applications the simple cross-entropy is often used,
there are cases in which the relative entropy is more suitable. The most typical case is
when we need to build a symmetrical distance between two sequences. One could think
of estimating self-entropy comparing, with the modified LZ77, two portions of a given
sequence. This method is not very reliable since many biases could afflict the results
obtained in this way. For example if we split a book into two parts and try to measure
the cross-entropy of these two parts, the result we would obtain could be heavily affected
by the names of the characters present in the two parts. More importantly, defining the
position of the cut would be completely arbitrary, and this arbitrariness would matter a
lot especially for very short sequences. We shall address this problem in section 3.

2.2. On the definition of a distance

In this section we address the problem of defining a distance between two generic sequences
A and B. A distance D is an application that must satisfy three requirements:

(1) positivity: DAB ≥ 0 (DAB = 0 iff A = B);

(2) symmetry: DAB = DBA;

(3) triangular inequality: DAB ≤ DAC + DCB∀C.

As is evident, the relative entropy d(A||B) does not satisfy the last two properties
while it is never negative. Nevertheless one can define a symmetric quantity as follows:

PAB = PBA =
C(A|B) − C(B|B)

C(B|B)
+

C(B|A) − C(A|A)

C(A|A)
. (9)

We now have a symmetric quantity, but PAB does not satisfy, in general, the triangular
inequality. In order to obtain a real mathematical distance we give a prescription according
to which this last property is met. For every pair A and B of sequences, the prescription
is

if PAB > min
C

[PAC + PCB] then

PAB = min
C

[PAC + PCB]. (10)

By iterating this procedure until for any A, B, C, PAB ≤ PAC + PCB, we obtain a true
distance DAB. In particular the distance obtained in this way is simply the minimum over
all the paths connecting A and B of the total cost of the path (according to PAB): i.e.,

DAB = min
{N≥2}

min
{X1,...,XN :X1=A,XN=B}

N−1∑

k=0

PXkXk+1
. (11)

Also it is easy to see that DAB is the maximal distance not larger than PA,B for any
A, B, where we have considered a partial ordering on the set of distances: P ≥ P ′ if
PAB ≥ P ′

AB, for all pairs A, B.

doi:10.1088/1742-5468/2005/04/P04002 9

http://dx.doi.org/10.1088/1742-5468/2005/04/P04002


J.S
tat.M

ech.
(2005)

P
04002

Artificial sequences and complexity measures

Obviously this is not an a priori distance. The distance between A and B depends,
in principle, on the set of files we are considering.

In all our tests with linguistic texts the triangle condition was always satisfied without
the need to have recourse to the above-mentioned prescription. However there are cases
in other contexts, for instance, genetic sequences, in which it could be necessary to force
the triangularization procedure described above.

An alternative definition of distance can be given considering

RAB =
√

PAB, (12)

where the square root must be taken before forcing the triangularization. The idea of
using RAB is suggested by the fact that as A and B are very close sources, PAB is of the
order of the square of their ‘difference’. Let us see this in a concrete example where the
distance between the two sources is very small. Suppose we have two sources A and B
which can emit sequences of 0 and 1. Let A emit a 0 with a probability p and 1 with
the complementary probability 1 − p. Now let the source B emit a 0 with a probability
p + ε and a 1 with a probability 1 − (p + ε), where ε is an infinitesimal quantity. In this
situation it can be easily shown that the relative entropy of A and B is proportional to ε2

and, of course, PAB is then proportional to the same quantity. Taking the square root of
PAB is then simply requiring that, if two sources have a distribution of probability that
differs for a small ε, their distance must be of the order of ε instead of being reduced to
the ε2 order.

It is important to recall that an earlier and rigorous definition of an unnormalized
distance between two generic strings of characters has been proposed in [58] in terms of
the Kolmogorov complexity and of the conditional Kolmogorov complexity [30] (see below
for the definition).

A normalized version of this distance has been proposed in [52, 59]. In particular Li
et al define

dK(x, y) =
max(K(x|y), K(y|x))

max(K(x), K(y))
(13)

where the subscript K refers to its definition in terms of the Kolmogorov complexity.
K(x|y) is the conditional Kolmogorov complexity defined as the length of the shortest
program for computing x if y is furnished as an auxiliary input to the computation,
and K(x) and K(y) are the Kolmogorov complexities of strings x and y, respectively.
The distance dK(x, y) is symmetrical and it is shown to satisfy the identity axiom
up to a precision dK(x, x) = O(1/K(x)) and the triangular inequality dK(x, y) <=
dK(y, z) + dK(z, y) up to an additive term O(1/ max(K(x), K(y), K(z))).

The problem with this distance is the fact that it is defined in terms of the conditional
Kolmogorov complexity which is an uncomputable quantity and its computation is
performed in an approximate way.

In particular what is important is that the specific procedure (algorithm) used to
approximate this quantity, which is indeed a well defined mathematical operation, defines
a true distance. In the specific case of the distance dK(x, y) defined in [52] the authors
approximate this distance by the so-called normalized compression distance

NCD(x, y) =
C(xy) − min(C(x), C(y))

max(C(x), C(y))
(14)
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where C(xy) is the compressed size of the concatenation of x and y, and C(x) and
C(y) denote the compressed sizes of x and y, respectively. Then these quantities are
approximated in a suitable way by using real world compressors.

It is important to remark that there exists a discrepancy between the definition (13)
and its actual approximate computation (14).

We discuss here in some detail the case of the LZ77 compressor. Using the results
presented in section 2.1, one obtains that, if the length of y is small enough (see
expression (6)), NCD(x, y) is actually estimating the cross-entropy of x and y. The cross-
entropy is not a distance since it does not satisfy the identity axiom, it is not symmetrical
and it does not satisfy the triangular inequality. In the general case of y being not small,
again following the discussion of section 2.1 (presented in more detail in [11]), one can
show that NCD(x, y) is given roughly (for Lx large enough) by

1 +
Lα

x

Ly

d(x||y)

C(y)
, (15)

where Lx and Ly are the lengths of the x and y files (with Ly 	 Lα
x) and d(x||y) is the

relative entropy rate of x and y. Again this estimate does not define a metric. Moreover,
since α ≤ 1 one can see that NCD(x, y) → 1, independently of the choice of x and y when
Lx and Ly tend to infinity.

The discrepancy between the definition of a mathematical distance based on the
conditional Kolmogorov complexity and its actual approximate computation in [52] has
also been pointed out in [60].

Finally it is important to note that recently Otu and Sayood [61] have proposed an
alternative definition of distance between two strings of characters, which is rigorous and
computable. Their approach is based on the LZ complexity [62] of a sequence S which can
be defined in terms of the number of steps required by a suitable production process to
generate S. In their very interesting paper they also give a review on this and correlated
problems. We do not enter here into details and we refer the reader to [61].

3. Dictionaries and artificial texts

As we have seen, LZ77 replaces sequences of characters with a pointer to their previous
appearance in the text. We now need some definitions before proceeding. We describe
as a dictionary of a sequence the whole set of subsequences replaced with a pointer by
LZ77, and we refer to these sequences as the dictionary’s words. As is evident from these
definitions, a particular word can be present many times in the dictionary. Finally, we
describe as a root of a dictionary the sequence it has been extracted from. It is important
to stress how this dictionary has in principle nothing to do with the ordinary dictionary
of a given language. On the other hand there could be important similarities of the LZ77
dictionary of a written text and the dictionary of the language in which the text is written.
As examples, we report in tables 1 and 2 the most frequent and the longest words found
by LZ77 while zipping Melville’s Moby Dick text. Figure 2 reports an example of the
frequency–length distribution of the LZ77 words as a function of their length (for a very
similar figure and similar but less complete dictionary analysis see [10]).

Beyond their utility for zipping purposes, the dictionaries have intrinsic interest
since one can consider them as a source for the principal and more important syntactic
structures present in the sequence/text from which the dictionary originates.

doi:10.1088/1742-5468/2005/04/P04002 11

http://dx.doi.org/10.1088/1742-5468/2005/04/P04002


J.S
tat.M

ech.
(2005)

P
04002

Artificial sequences and complexity measures

Table 1. Most frequent LZ77 words found in Moby Dick’s text: here we present
the most represented word in the dictionary of Moby Dick. The dictionary was
extracted using a 32 768 sliding window in LZ77. The � represents the space
character.
Frequency Length Word

110 6 .�The�
107 7 in�the�
98 4 you�
94 6 .�But�
92 9 from�the�
92 5 �very�
91 4 one�

Table 2. Longest words in Moby Dick: here we present the longest words in
the dictionary of Moby Dick. Each of these words appears only one time in the
dictionary. The dictionary was extracted using a 32 768 sliding window in LZ77.

Frequency Length Word

1 80 ,–�Such�a�funny,�sporty,�gamy,�jesty,�joky,
�hoky–poky�lad,�is�the�Ocean,�oh!�Th

1 78 ,–�Such�a�funny,�sporty,�gamy,�jesty,�joky,
�hoky–poky�lad,�is�the�Ocean,�oh!�

1 63 ‘�’ I�look,�you�look,�he�looks; �we look,
�ye�look,�they look.‘�’W

1 63 ‘!�’ I�look,�you�look,�he�looks; �we look,
�ye�look,�they look. ‘�’

1 54 repeated�in�this�book,�that�the
the�skeleton�of�the whale

1 46 .�THIS�TABLET�Is�erected�to�his
�Memory�BY�HIS�

1 43 s�a�mild,�mild�wind,�and�a�mild�looking�sky

A straightforward application is the possibility of constructing artificial texts. By this
name we mean sequences of characters built by concatenating words randomly extracted
from a specific dictionary.

Each word has a probability of being extracted proportional to the number of its
occurrences in the dictionary. Since typically LZ77 words already contain spaces, we do
not include further spaces separating them. It should be stressed as the structure of a
dictionary is affected by the size of LZ77 sliding window. In our case we have typically
adopted windows of 32 768 characters, and, in a few cases, of 65 536 characters.

Below we present an excerpt of 400 characters taken from an artificial text (AT)
having Melville’s Moby Dick text as the root.

those boats round with at coneedallioundantic turneeling he had

Queequeg, man.’’Tisheed the o corevolving se were by their fAhab tcandle

aed. Cthat the ive ing, head upon that can onge Sirare ce more le in and

for contrding to the nt him hat seemed ore, es; vacaknowt.’’ ’’ it
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seemside delirirous from the gan. All ththe boats bedagain, brightflesh,

yourselfhe blacksmith’s leg t. Mre?loft restoon

As is evident the meaning is completely lost and the only feature of this text is to
represent in a significant statistical way the typical structures found in the original root
text (i.e. the typical subsequences of characters).

The case of sequences representing texts is interesting, and it is worth spending a little
time on it, since a clear definition of ‘word’ already exists in every language. In this case
one could also define natural artificial texts (NAT). A NAT is obtained by concatenating
true words as extracted from a specific text written in a certain language. Also in this case
each word would be chosen according to a probability proportional to the frequency of its
occurrence in the text. Just for comparison with the previous AT we report an example of
a natural artificial text built using real words from the English dictionary taken randomly
with a probability proportional to their frequency of occurrence in Moby Dick’s text.

of Though sold, moody Bedford opened white last on night; FRENCH

unnecessary the charitable utterly form submerged blood firm-seated

barricade, and one likely keenly end, sort was the to all what ship nine

astern; Mr. and Rather by those of downward dumb minute and are essential

were baby the balancing right there upon flag were months, equatorial

whale’s Greenland great spouted know Delight, had

We now describe how artificial texts can be effectively used for recognition and
classification purposes. First of all AT present several positive features. They allow
one to define typical words for generic sequences (not only for texts). Moreover for each
original text (or original sequence), one can construct an ensemble of AT. This opens the
way to the possibility of performing statistical analysis by comparing the features of many
AT all representative of the same original root text. In this way it is possible to overcome
all the difficulties, discussed in the previous section, related to the length of the strings
analysed. In fact it seems very plausible that, once a certain ‘reasonable’ AT size has
been established, any string can be well represented by a number of AT proportional to
its length. On the other hand one can construct AT by merging dictionaries coming from
different original texts: merging dictionaries extracted from different texts all about the
same subject or all written by the same author. In this way the AT would play the role
of an archetypal text of that specific subject or that specific author [63].

The possibility of constructing many different AT all representative of the same
original sequence (or of a given source) allows for an alternative way to estimate the self-
entropy of a source (and consequently the relative entropy of two sources as mentioned
above). The cross-entropy of two AT corresponding to the same source will give in fact
directly an estimate of the self-entropy of the source. This is an important point since
in this way it is possible to estimate the relative entropy and the distances between two
texts of the form proposed in equation (9) in a coherent framework. Finally, as is shown
in figure 3, comparing many AT coming from the same two roots (or a single root), we
can estimate a statistical error on the value of the cross-entropy of the two roots.

With the help of AT we can then build a comparison scheme (artificial text comparison
or ATC; see figure 3) between sequences whose validity will be checked in the following
sections. This scheme is very general since it can be applied to any kind of sequence
independently of the coding behind it. Moreover the generality of the scheme comes
from the fact that, by means of a redefinition of the concept of ‘word’, we are able to
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Figure 2. LZ77 word distribution: this figure illustrates the distribution of
the LZ77 words found in different strings of characters. Above: results for
the dictionary of Moby Dick are shown. In the upper curve several findings
of the same word are considered separately; in the lower curve each different
word is counted only once. It can be shown that the peaks are well fitted
by a log-normal distribution, while there are large deviations from it for large
lengths. Below: words extracted from Mesorhizobium loti bacterium’s original
and reshuffled DNA sequences are analysed. The log-normal curve fits well the
whole distribution of words extracted from the reshuffled string, but is unable to
describe the presence of the long words of the true one.
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Figure 3. Artificial text comparison (ATC) method: this is the scheme of the
artificial text comparison method. Instead of comparing two original strings,
several AT (two in figure) are created starting from the dictionaries extracted
from the original strings, and the comparison is between pairs of AT. For each
pair of AT coming from different roots a cross-entropy value C(i|j) is measured
and the cross-entropy of the root strings is obtained as the average 〈C〉 of all the
C(i|j). This method has the advantage of allowing for an estimation of an error,
σ, on the value obtained for the cross-entropy 〈C〉, as the standard deviation of
the C(i|j). From the point of view of the ATC computational demand, point
(1) simply consists in the procedure of zipping the original files, that usually
requires a few seconds, points (2) and (4) are of course negligible, while point
(3) is crucial. Obviously, in fact, the machine time required for the cross-entropy
estimation grows as the square power of the number of AT created (for fixed
length of the AT).

extract subsequences from a generic sequence using a deterministic algorithm (for instance
LZ77) which eliminates every arbitrariness (at least once the algorithm for the dictionary
extraction has been chosen). In the following sections we shall discuss in detail how one
can use AT for recognition and classification purposes.

4. Recognition of linguistic features

Our first experiments are concerned with recognition of linguistic features. Here we
consider those situations in which we have a corpus of known texts and one unknown
text X. We are interested here in identifying the known text A closest (according to some
rule) to the X one. We then say that X, being similar to A, belongs to the same group as
A. This group can, for instance, be formed by all the works of an author, and in that case
we say that our method attributed X to that author. We now present results obtained in
experiments on language recognition and authorship attribution. After having explained
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our experiments we will be able to make some more comments on the criterion we adopted
to set recognition and/or attribution.

4.1. Language recognition

Suppose we are interested in the automatic recognition of the language in which a given
text X is written. This case can be seen as a first benchmark for our recognition technique.
The procedure we use considers a collection (a corpus), as large as possible, of texts in
different (known) languages: English, French, Italian, Tagalog,.... We take an X text to
play the role of the unknown text whose language has to be recognized, and the remaining
Ai texts of our collection to form our background. We then measure the cross-entropy of
our X text and every Ai with the procedure discussed in section 2. The text among the Ai

group with the smallest cross-entropy with the X one selects the language closest to that of
the X file, or exactly its language, if the collection of languages contains this language. In
our experiment we have considered in particular a corpus of texts in 10 official languages of
the European Union (UE) [64]: Danish, Dutch, English, Finnish, French, German, Italian,
Portuguese, Spanish and Swedish. Using 10 texts for each language we had a collection
of 100 texts. We have obtained that for any single text the method has recognized the
language. This means that the text Ai for which the cross-entropy with the unknown
X text was the smallest was a text written in the same language. We found also that
if we ranked for each X text all the texts Ai as a function of the cross-entropy, all the
texts written in the same language of the unknown text were in the first positions. This
means that the recall, defined in the framework of information retrieval as the ratio of the
number of relevant documents retrieved (independently of the position in the ranking)
and the total number of existing relevant documents, is maximal, i.e. equal to one. The
recognition of language works quite well for lengths of the X file as small as a few tens of
characters.

4.2. Authorship attribution

Suppose now that we are interested in the automatic recognition of the author of a given
text X. We shall consider, as before, a collection, as large as possible, of texts of several
(known) authors all written in the same language as the unknown text and we shall look
for the text Ai for which the cross-entropy with the X text is minimum. In order to collect
a certain level of statistics we have performed the experiment using a corpus of 87 different
texts [65] by 11 Italian authors, using for each run one of the texts in the corpus as the
unknown X text. In a first step we proceeded exactly as for language recognition, using
the actual texts. The results, shown in table 3, feature a rate of success of roughly 93%.
This rate is the ratio of the number of texts whose author has been recognized (another
text by the same author was ranked as first) and the total number of texts considered.
There are of course fluctuations in the success rate for authors and this has to be expected
since the writing style is something difficult to grasp and define; moreover it can vary a
lot in the production of a single author.

We then proceeded to analysing the same corpus with the ATC method we have
discussed in the previous section. We extracted the dictionary from each text, and built
up our 87 artificial texts (each one 30 000 characters long). In each run of our experiment
we chose one artificial text to play the role of the text whose author was unknown and
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Table 3. Author recognition: this table illustrates the results for the experiments
on author recognition. For each author we report the number of different texts
considered and a measure of success for each of the three methods adopted.
Labelled as successes are the numbers of times another text by the same author
was ranked in the first position using the minimum cross-entropy criterion.

Number of Successes: Successes: Successes:
Author texts actual texts ATC NATC

Alighieri 5 5 5 5
D’Annunzio 4 4 4 4
Deledda 15 15 15 15
Fogazzaro 5 4 5 5
Guicciardini 6 5 6 6
Machiavelli 12 12 11 10
Manzoni 4 3 4 4
Pirandello 11 11 11 11
Salgari 11 10 11 11
Svevo 5 5 5 5
Verga 9 7 9 9
Totals 87 81 86 85

the other 86 to be our background. The result is significant. We found that 86 times
out of 87 trials the author was indeed recognized, i.e. the cross entropy of our unknown
text and at least another text by the right author was the smallest. This means that the
rate of success using artificial texts was of 98.8%. The unrecognized text was L’Asino by
Machiavelli, which was attributed to Dante (La Divina Commedia), and, in fact, these
are both poetic texts; so it does not appear so strange thinking that L’Asino is found to
be in some way closer to the Commedia than to Il Principe. A slightly different way of
proceeding is the following. Instead of extracting an artificial text from each actual text,
we made a single artificial text, which we call the author archetype, for each author. To
do this we simply joined all the dictionaries for the author and then proceeded as before.
In this case we used actual works as unknown texts and author archetypes as background.
We obtained that 86 out of 87 unknown real texts matched the right artificial author text,
the one missing being again L’Asino.

In order to investigate this mismatching further we exploited one of the biggest
advantages the ATC method can give if compared to real text comparison. While in
real text comparison only one trial can be made, ATC allows for creating an ensemble
of different artificial texts, and so more than one trial is possible. In our specific case,
however, 10 different ATC trials performed both with artificial texts and with author
archetypes gave the same result, attributing L’Asino to Dante. This can probably confirm
our supposition that the pattern of poetic register is very strong in this case. To be sure
that our 98.8% rate of success was not due to a particular fortuitous accident in our set
of artificial texts, we repeated our experiment with a corpus formed by 5 artificial texts
from each actual text. This means that our collection was formed by 435 texts. We then
proceeded in the usual way. Having our cross-entropies of the 5Xn (n = 1, . . . , 5) artificial
texts coming from the same root X, and the remaining 430 ATs, we first joined all the
rankings relative to these Xn. Thus we had 430×5 cross-entropies of the AT extracted by
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the same root X and the other AT of our ensemble. We then averaged, for each root Ai,
all the 25 cross-entropies of an AT created from X text and an AT extracted from that
Ai. In this way we obtained 86 cross-entropy values, and we set authorship attribution
using the usual minimum criterion. We found again that 86 texts out of 87 were well
attributed, L’Asino being again misattributed.

This result shows that ATC is a robust method since it does not seem to be strongly
influenced by the particular set of artificial texts. In particular, as we have discussed
before, ATC allows for a quantification of the error in the cross-entropy estimation.
Defined as σm, the standard deviation estimated for the mth cross-entropy, in a ranking
in which the smallest cross-entropy value is the first one, we empirically observed these
relations:

σ1

C1

� σ2

C2

� σ3

C3

� 0.5% (16)

(C2 − C1) � σ1 � σ2. (17)

The difference C2 − C1 gives an indication of the level of confidence of the results.
When this difference is of the order of the standard deviation of C1 and C2, this is an
indication that the result for the attribution has a high level of confidence (at least inside
the corpus of reference files/texts considered).

Finally, in order to explore the possibility of using natural words, we performed
experiments with natural artificial texts. We call this method Natural ATC or NATC.
We built up five artificial texts for each actual one using Italian words instead of words
extracted by LZ77. Having these natural artificial texts we proceeded exactly as before.
We obtained that 85 out of 87 texts were recognized. Besides L’Asino, the other mismatch
was the Istorie Fiorentine by Machiavelli that was set closest to Storie Fiorentine dal 1378
al 1509 by Guicciardini. It seems clear that the closeness of the subjects treated in the
two texts played a fundamental role in the attribution.

It is interesting trying out some conjectures on why artificial texts made up by the
LZ77 extracted dictionary worked better in our experiment. Probably the main reason
is that LZ77 very often puts some correlation between characters and actual words by
grouping them into a single word, while clearly this correlation does not exist using natural
words. In a text written to be read, words and/or characters are correlated in a precise
way, especially in some cases (one of the most strict, but probably less significant, is ‘.’
followed by a capital letter). These observations could maybe suggest that LZ77 is able to
capture correlations that are in some sense a signature of an author, this signature being
stronger (up to a certain point, of course) than that of the subject of a particular text.
On the other hand this ability of keeping a memory of correlations, combined with the
specificity of the poetic register, could also explain the apparent strength of the poetic
pattern that seems to emerge from our experiments.

We have also performed some additional experiments on a corpus of English texts.
Results are shown in table 4. In this corpus there were a few poetic texts which, as we
could expect, were problematic for ATC. It is worth noting, in fact, that the number of
ATC failures is 7, and in this case it is higher than the value for actual text comparisons,
which is 4. However, if we look carefully we note that four of these seven mismatches come
from the five Marlowe works present in our corpus. Among Marlowe’s works only one is
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Table 4. Author recognition: this table illustrates the results for the experiments
on author recognition. In this case ATC results were afflicted by the presence
in the corpus of a few poetic texts that, as we have discussed, tend to recognize
each other.

Number of Successes: Successes: Successes:
Author texts actual texts ATC NATC

Bacon 6 6 6 6
Brown 3 2 2 2
Chaucer 6 6 6 6
Marlowe 5 4 1 2
Milton 8 8 7 7
Shakespeare 37 37 37 37
Spencer 7 5 6 5
Totals 72 68 65 65

misattributed by actual text comparison, too. This peculiarity of Marlowe roused our
interest and we analysed carefully Marlowe’s results. We found that one of the four bad
attributions was a poetic text, Hero, and was attributed to Spencer, while the remaining
three unrecognized texts were all attributed to Shakespeare. Similar results were obtained
using the NATC method which also does not allow for a clear distinction between Marlowe
and Shakespeare. Just as a matter of curiosity, and without entering into the debate, we
report here that, among the many theses on the real identity of Shakespeare, there is one
that claims that Shakespeare was just a pseudonym used by Marlowe to sign some of his
works. The Marlowe Society embraces this cause and has presented many works which
could prove this theory, or at least make it plausible (starting of course by refuting the
official date of death of Marlowe, 1593).

Before concluding this section several remarks are in order concerning our minimum
cross-entropy method used to perform authorship attribution. Our criterion has been that
of saying that the X should be attributed to a given author if another work of this author
is the closest (in the cross-entropy ranking) to X. It can happen, and sometimes this is
the case, that the text second closest to X belongs to another author, different from the
first. In other words, in the ranking of relative entropies of the X text and all the other
texts of our corpus, works belonging to a given author are far from clustering in the same
zone of the ranking. This fact can be easily explained with the large variety of features
that can be present in the production of an author. Dante, for instance, wrote both
poetry and prose, the latter both in Italian and in Latin. In order to take into account
this non-homogeneity we decided to set authorship by watching only at the closest text
to the unknown one. In fact, from what we have said, averaging or taking into account
all the texts of every author could introduce biases given by the heterogeneity in each
author’s production. Our choice is then perfectly coherent with the purpose of authorship
attribution which is not to determine an average author of the unknown text, but who
wrote that particular text. The limitation of this method is the assumption that if an
author wrote a text, then he or she is likely to have written a similar text, at least as
regards structural or syntactic aspects. From our experiments we can say, a posteriori,
that this assumption does not seem to be unrealistic.
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A further remark concerns the fact that our results for authorship attribution could
only provide some hints about the real paternity of a text. One cannot, in fact, ever be
sure that the reference corpus contains at least one text by the unknown author. If this is
not the case we can only say that some works of a given author resemble the unknown text.
On the other hand the method could be highly effective when one has to decide among
a limited and predefined set of candidate authors: see for instance the Wright–Wright
problem [66] and the Grunberg–Van der Jagt problem in The Netherlands [67].

From a general point of view, finally, it is important to remark that the ATC method
is of much greater interest than the NATC one. In fact, even though in linguistic related
problems the two methods give comparable results, ATC can be used with every set of
generic sequences, while the NATC requires a precise definition of words in the original
strings.

5. Self-consistent classification

In this section we are interested in the classification of large corpora in situations where
no a priori knowledge of the corpora’s structure is given. Our method, mutuated by
the phylogenetic analysis of biological sequences [68]–[70], considers the construction
of a distance matrix, i.e. a matrix whose elements are the distances between pairs of
texts. Starting from the distance matrix one can build a tree representation: phylogenetic
trees [70], spanning trees etc. With these trees a classification is achieved by observing
clusters that are supposed to be formed by similar elements. The definition of a distance
between two sequences of characters has been discussed in section 2.2.

5.1. Author trees

In our applications we used the Fitch–Margoliash method [71] of the package PhylIP
(Phylogeny Inference Package) [72] which basically constructs a tree by minimizing the
net disagreement between the matrix pairwise distances and the distances measured on the
tree. Similar results have been obtained with the ‘Neighbor’ algorithm [73]. The first test
for our method consisted in analysing with the Fitch–Margoliash procedure the distance
matrix obtained for the corpus of Italian texts used before for authorship attribution.
Results are presented in figure 4. As can be seen, works by the same author tend to
cluster quite well in the tree presented.

5.2. Language trees

The next step was applying our method in a less obvious context: that of a relationship
between languages. Suppose we have a collection of texts written in different languages.
More precisely, imagine we have a corpus containing several versions of the same text in
different languages, and are interested in a classification of this corpus. In order to have
the largest possible corpus of texts in different languages, we have used ‘The Universal
Declaration of Human Rights’ [74] which sets the Guinness World Record for the most
translated document.

We proceeded here for our analysis exactly as for author trees. We analysed with
the Fitch–Margoliash method [71] the distance matrix obtained using the artificial text
comparison method with five artificial texts for each real text. After averaging over

doi:10.1088/1742-5468/2005/04/P04002 20

http://dx.doi.org/10.1088/1742-5468/2005/04/P04002


J.S
tat.M

ech.
(2005)

P
04002

Artificial sequences and complexity measures

2
3

4 5

8

9
10

13 14

15

16

20
21

22

7

1 6

11

25
26

30

34

40

41
42

4344

45
46

4849

50
51

53
56

5758

59

60

61

6263

64

65

66
68

72

75

77

78

79
80
81

82 83

84
85
86

87

19

3231

27
28

24

67

71

69
70

23

73

55
54

39

29

47

35

74

76

33

37
38

36

12

Grazia Deledda

Italo Svevo

Alessandro Manzoni

Dante Alighieri

Niccolo’ Machiavelli

Francesco Guicciardini

Luigi Pirandello

Emilio Salgari

Antonio Fogazzaro
52

Giovanni Verga

17
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Gabriele D’Annunzio

Figure 4. Italian authors’ tree: the tree obtained with the Fitch–Margoliash
algorithm using the P pseudo-distance built from the ATC method for the
corpus of Italian texts considered in section 4.2. For the sake of clarity in the
representation we have chosen a constant length for the distances between nodes
and between nodes and leaves.

the artificial texts sharing the same root, we built up the distance matrix as discussed
in section 2.2. In figure 5 we show the tree obtained with the Fitch–Margoliash
algorithm for over 50 languages widespread on the Euro-Asiatic continent. We can notice
that essentially all the main linguistic groups (Ethnologue source [75]) are recognized:
Romance, Celtic, Germanic, Ugro-Finnic, Slavic, Baltic, Altaic. On the other hand one
has isolated languages such as the Maltese, typically considered a Semitic language because
of its Arabic base, and the Basque, a non-Indo-European language whose origins and
relationships with other languages are uncertain. The results are also in good agreement
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Albanian [Albany]
Romani Balkan [East Europe]
Maltese [Malta]

Romanian [Romania]
Romani Vlach [Macedonia]

Corsican [France]
Sammarinese [Italy]
Friulian [Italy]
Italian [Italy]
Rhaeto Romance [Switzerland]

French [France]
Sardinian [Italy]
Galician [Spain]
Spanish [Spain]
Asturian [Spain]
Portuguese [Portugal]

Wallon [Belique]
Occitan Auvergnat [France]

Occitan [France]
Catalan [Spain]
English [UK]
Latvian [Latvia]
Sorbian [Germany]
Serbian [Serbia]
Croatian [Croatia]
Bosnian [Bosnia]
Slovenian [Slovenia]
Slovak [Slovakia]
Polish [Poland]
Utzbek [Utzbekistan]
Turkish [Turkey]

Irish  Gaelic [Ireland]
Scottish Gaelic [UK]

Welsh [UK]
Hungarian [Hungary]

Finnish [Finland]
Lappish [Norway]

Estonian [Estonia]
Icelandic [Iceland]
Faroese [Denmark]
Swedish [Sweden]
Norwegian Nynorsk [Norway]
Norwegian Bokmal [Norway]
Danish [Denmark]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Breton [france]
Basque [Spain]

ROMANCE

SLAVIC

CELTIC
ALTAIC

GERMANIC

UGRO–FINNIC 

Figure 5. Indo-European family language tree: this figure illustrates the
phylogenetic-like tree constructed on the basis of more than 50 different versions
of the ‘The Universal Declaration of Human Rights’. The tree is obtained using
the Fitch–Margoliash method applied to the symmetrical distance matrix based
on the R distance defined in section 2.2 built from the ATC method. This tree
features essentially all the main linguistic groups of the Euro-Asiatic continent
(Romance, Celtic, Germanic, Ugro-Finnic, Slavic, Baltic, Altaic), as well as a few
isolated languages as the Maltese, typically considered an Afro-Asiatic language,
and the Basque, classified as a non-Indo-European language and whose origins
and relationships with other languages are uncertain. The tree is unrooted, i.e. it
does not require any hypothesis about common ancestors for the languages and
it cannot be used to infer information about common ancestors of the languages.
For more details, see the text. The lengths of the paths between pairs of
documents measured along the tree branches are not proportional to the actual
distances between the documents.

with those obtained by true sequence comparison reported in [3], with a remarkable
difference concerning the Ugro-Finnic group here fully recognized, while with true texts
Hungarian was put a little apart.

After the publication of our tree in [3] a similar tree, using the same data set, was
proposed in [52] using NCD(x, y) (see section 2.2) estimated with gzip.

It is important to stress that these trees are not intended to reproduce the current
trends in the reconstruction of genetic relations among languages. They are clearly biased
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by using entire modern texts for their construction. In the reconstruction of genetic
relationships among languages one is typically faced with the problem of distinguishing
vertical (i.e. the passage of information from parent languages to child languages) from
horizontal transmission (i.e. which includes all the other pathways in which two languages
interact). This is the main problem of lexicostatistics and glottochronology [76] and the
most widely used method is that of the so-called Swadesh 100-word lists [77]. The main
idea is that of comparing languages by comparing lists of so-called basic words. These
lists only include the so-called cognate words, ignoring as much as possible horizontal
borrowings of words between languages. It is clear now how an obvious source of bias in
our results is represented by the fact of not having performed any selection of words to
be compared. It turns out then that in our trees English is closer to Romance languages
simply because almost 50% of English vocabulary has been borrowed from French. These
borrowings should be expunged if one is interested in reconstructing the actual genetic
relationships between languages. Work is currently in progress in an effort to merge
Swadesh list techniques with our methods [78].

6. Discussion and conclusions

We have presented here a class of methods, based on the LZ77 compression algorithm, for
information extraction and automatic categorization of generic sequences of characters.
The essential ingredient of these methods is the definition and the measuring of remoteness
and of the distance between pairs of sequences of characters. In this context we have
introduced in particular the notion of a dictionary of a sequence and of an artificial
text (or artificial sequence) and we have implemented these new tools in an information
extraction scheme (ATC) that allows us to overcome several difficulties arising in the
comparison of sequences.

With these tools in our hands, we have focused our attention on several applications
to textual corpora in several languages, since in this context it is particularly easy to
judge experimental results. We first showed that dictionaries are intrinsically interesting
and that they contain relevant signatures of the texts they are extracted from. Then in a
first series of experiments we have shown how we can determine, and then extract, some
semantic attributes of an unknown text (its language, author or subject). We have also
shown that comparing artificial texts, instead of actual sequences, gives better results in
most of these situations. In the linguistic context, moreover, we have been able to define
natural artificial texts (NAT) exploiting the presence of natural language words in the
texts analysed. Results from experiments indicate that this additional information does
not produce any advantage, i.e. the NAT comparison (NATC) and ATC yield the same
results. However, the question is not whether NATC performs better than ATC. From
a general point of view, in fact, the ATC method is of much greater interest than the
NATC one. In fact, while in linguistic related problems the two methods perform equally,
in many cases NATC are impossible to construct because outside linguistics there is no
precise definition of ‘word’. On the other hand the fact that ATC and NATC perform
at least equally well in linguistics motivated problems is good news, because one can
reasonably infer that the situation will not change drastically in situations where NATC
is not available any longer.

A slightly different application of our method is that of the self-consistent classification
of a corpus of sequences. In this case we do not need any information about the corpus,
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but we are interested in observing the self-organization that arises from the knowledge of
a matrix of distances between pairs of elements. A good way to represent this structure
can be obtained using phylogenetic algorithms to build a tree representation of the corpus
considered. In this paper we have shown how the self-organized structures observed in
these trees are related to the semantic attributes of the texts considered.

Finally, it is worth stressing once again the high level of versatility and generality of
our method, that applies to any kind of corpora of character strings independently of the
type of coding behind them: texts, symbolic dynamics of dynamical systems, time series,
genetic sequences etc. These features could be potentially very important for fields where
human intuition can fail: genomics, geological time series, stock market data, medical
monitoring etc.
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[30] Li M and Vitányi P M B, 1997 An Introduction to Kolmogorov Complexity and its Applications 2nd edn

(Berlin: Springer)
[31] Wyner A D and Ziv J, The sliding-window Lempel–Ziv algorithm is asymptotically optimal , 1994 Proc.

IEEE 82 872
[32] Pierce J R, 1980 Introduction to Information Theory: Symbols, Signals and Noise 2nd edn (New York:

Dover)
[33] Farach M, Noordewier M, Savari S, Shepp L, Wyner A and Ziv J, On the entropy of DNA: algorithms and

measurements based on memory and rapid convergence, 1995 Proc. 6th Annual ACM-SIAM Symp. on
Discrete Algorithms (San Francisco, CA, 1995) p 48
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