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We have studied the dynamics just below the temperature-driven critical point of the 2D q-color
Potts model in the square lattice, for q = 8, 12, 24. For finite-size systems, a metastable quasi-steady
regime à la Binder is observed, which we characterize by means of the nucleation and relaxation
times of the metastable phase. This phase is no longer observed below a given temperature, Tsp, at
which the relaxation time of the fluid becomes of the order of the times involved on the nucleation
processes. However, this temperature, which decreases for increasing q, converges to the critical
temperature of the model for increasing sizes and fixed q, and no metastability is supposed to exist
in the thermodynamic limit. These results agree with the droplet expansion performed for the 2D
Potts model by Meunier and Morel [16].
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I. INTRODUCTION

When a liquid is cooled below its melting tempera-
ture, crystallisation can often be avoided by a fast enough
cooling, and the liquid enters a phase, called supercooled
[1, 2, 3]. The supercooled phase is metastable, it has a
finite lifetime and it is unstable with respect to large fluc-
tuations although those characteristics are not a practi-
cal limitation: metastable states are ubiquitous in nature
and in technology (see references in [2]), and not dis-
tinct from stable states under many practical respects.
Metastability, as a general concept, is present in many
fields of physics, from superconductivity to high-energy
physics (see references in [4]). In particular, the under-
standing of metastability is crucial in the context of the
study of the glass-transition [1, 2, 3, 5]: the structural
glass transition occurs, during the cooling process, at a
certain temperature below which the liquid falls out-of-
equilibrium and forms the structural glass, unstable with
respect to the metastable phase. However, and despite
of its ubiquity and intrinsic theoretical interest, metasta-
bility is still not well understood, and a lot of theoretical
effort has been given on the problem in the last decades
[4, 6].
From a purely thermodynamic point of view, metastable
states satisfy the Callen minimum energy principle, but
only with respect to small enough fluctuations. In the
thermodynamic space (T, h) of field variables, where T
is the temperature and h is the pressure, in the case
of a fluid, or the magnetic field, in the case of a mag-
net, the metastable phase is described by a free energy
fm(T, h) in a region of (T, h) space in which it coex-
ists with the stable phase, described by f(T, h), and it
is: f < fm. Metastable states satisfy the local stability
condition, (∂hhfm)T ≤ 0, which is a necessary, but not
sufficient condition for stable equilibrium: it only guar-
antees the stability with respect to infinitesimal fluctua-
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tions. Metastable states are not stable with respect to a
large enough fluctuation: the system would prefer indeed
the equilibrium phase at (T, h) described by f(T, h) since
f(T, h) < fm(T, h).
Statistical mechanics of systems in mean field approxima-
tion, as the Landau theory of magnetism or the van der
Waals equation of state for the gas-liquid condensation,
accounts for metastable phases, which, in this context,
exhibit the thermodynamic properties described above.
In mean field, the only allowed form of fluctuation is a
spatially uniform change of the order parameter, m, and
the free energy cost of such a change is extensive in the
volume. For this reason, the free energy barriers separat-
ing the relative minima of the free energy functional in
(T, m) space from the absolute minima, the stable phase,
are infinite in the thermodynamic limit, and, hence, the
corresponding metastable states would have an infinite
lifetime.
When fluctuations are taken into account, however, sta-
tistical mechanics of short-range interaction systems can-
not account properly for metastability, since, when the
thermodynamic limit is taken, the partition function in
ensemble theory is dominated by the global minimum of
the free energy functional in phase space. Metastable
states being not ergodic, they are not well-described by
the partition function; for them, temporal averages are
not equivalent to the ensemble average. Beyond mean
field, there always exist a finite probability of surmount-
ing the free energy density barriers in phase space by a
local nucleation process and, hence, it is not possible to
state whether a given distribution is metastable without
making reference to a timescale, related in some way to
the mentioned probability of nucleation [7].
An alternative is the dynamic description of metastabil-
ity [6, 7, 8], which is characterized by a two-step relax-
ation during the dynamic evolution of the system in the
coexistence region. The two-step relaxation is associated
with two times (τR and τN ), such that the order param-
eter and other observables are quasi-stationary in time
in the interval τR < t < τN ). For systems with discrete
phase space, nucleation times can be computed by the
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numerical solution of a master equation describing their
temporal evolution, as pioneered by Binder for the Ising
model [4, 8].
Although this dynamic definition of metastability is ap-
parently different from the thermodynamic picture men-
tioned above, there exist connections between the parti-
tion function-based methods and the dynamic consider-
ations [4, 6]. The most relevant is probably the result
by Langer [9], who shows that, for a wide class of mod-
els, whose dynamics can be described by a Fokker-Plank
equation, the nucleation rate, Γ ∝ τ−1

N , (the number of
nucleation events per unit time and volume) can be writ-
ten under certain limits as:

Γ =
βκ

π
|Im f̃ | (1)

where β = 1/kT is the inverse temperature, the pref-
actor κ contains all dependence on the specific dynam-
ics, and Im f̃ is the imaginary part of the (divergent)
analytical continuation of the equilibrium free energy
density in the region of (T, h) corresponding to the or-
dered state. This puts into relation and generalizes sev-
eral other previous results, as the Arrhenius-like relation
ln Γ(T, h) = ln c(T ) − βF (T, h) between the nucleation
rate and the free energy cost, F , of the formation of a
‘critical droplet’, in the context of classical nucleation
theory [4, 10], giving also the expression for c from first-
principles.
There are also other connections between ‘static’ and dy-
namic approaches to metastability, as the result by Pen-
rose for the droplet model of condensation [11] (see also
[6, 12]), a gas of non-interacting droplets of all possible
sizes. If the partition function is restricted to consider
only undercritical clusters, nucleation is avoided, and an-
alytic continuations of stable isotherms in the metastable
region can be computed. The resulting free energy, mo-
rover, coincides with Re f̃ , and also the Langer relation
between Im f̃ and Γ holds when the Becker-Döring dy-
namic is considered for the droplets [10].
Even if the result (1) by Langer has been proved for sev-
eral models (see references in [4]), no general proof exists,
and its validity is unclear [14]. In particular, the identity
(1) has been proved [12] for the field-driven transition of
the Ising model below the critical temperature and in the
limit of small field, computing f̃ from a droplet expan-
sion.
For this model it has been shown the equivalence be-
tween both types of calculations of Γ, using the field-
theoretical calculus of f̃ , and the solution of the Master
equation with the Monte-Carlo method [8]. This agree-
ment has been extensively further studied for the Ising
model [15]. Lattice models are particularly suitable for
this comparison since, on the one hand, it is possible to
compute numerically nucleation rates, and, on the other
hand, their critical properties and surface tension are of-
ten known exactly, which makes possible an analytical
droplet expansion calculus. Morover, as mentioned in

[8], the concept of droplet is for them unambiguously de-
fined.
A similar droplet expansion computation of the free en-
ergy has been done in 2000 by Meunier and Morel [16] for
the study of the first-order transition of one of the better
known lattice models in equilibrium statistical mechan-
ics: the q-color Potts model (q-PM) with q > 4 [17].
For finite-size systems, a free energy barrier is found,
associated with a metastable state, in a given tempera-
ture range, which is shown, however, to shrink to zero in
the thermodynamic limit. To our knowledge, the present
work is the first attempt to contrast the results of Me-
unier and Morel with a dynamic computation, as they
suggest to do.
Nevertheless, the dynamics associated with the q-PM
transition has already been studied [18, 19, 20, 21, 22, 23,
24], and it is itself a topic of relevance. In [18] metastabil-
ity in the field-driven transition of the 2d q-PM is stud-
ied. Numerical results suggest the existence of a dynamic
metastable phase associated with the temperature-driven
transition for q = 5, d = 2 and q = 3, d = 3 [19, 20],
even if such a metastable phase is not analysed quanti-
tatively. For this transition hysteresis cycles are studied
numerically, in [22, 23], and it is concluded that relax-
ation through the equilibrium state occurs via nucleation.
In this work we present some results on the dynamic
metastability of the q-PM in the lattice, emphasyzing
its dependence on the lattice size, up to a linear size
L = 375. In the next section we introduce the model
and our notation, the previous results of the droplet ex-
pansion [16] and of the mean field approximation for the
model. In section III we present and interpret the results
from the dynamics, together with the finite-size analysis,
and compare them with those introduced in section II.
Section IV is to conclude and summarize.

II. MEAN FIELD AND DROPLET EXPANSION

The Potts model [17] is defined in a lattice L in
which every site, i ∈ L, can take q equivalent values,
ci ∈ {1 · · · q}, usually called colors. The Hamiltonian is:

H =
1

2

∑

i∈L

j∈N(i)

(1 − δci,cj
) (2)

where N(i) ⊂ L is the set of neighbours of the site
i. The model has been proved [17, 25] to exhibit a
first-order phase transition for q > 4 in two dimensions,
and a continuous phase transition for q ≤ 4. In the
square lattice both transitions occur at a critical inverse
temperature βc(q) = ln(1 + q1/2). The q =8,12,24-color
Potts models we study are, thus, 2d-lattice models, with
short-range two-body interactions and which presents a
first-order temperature-driven transition at βc(q).
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In the absence of external fields, the q-PM has only
two thermodynamic variables, (T, N), N being the
number of sites, and the reduced equation of state is
df(T ) = −s(T ) dT . The mean field approximation
[17] predicts a first-order transition for q > 2 at a
temperature Tc = γ(q − 2)/(q − 1) ln(q − 1), where γ is
the connectivity. The equilibrium state for T > Tc is
the disordered state with zero magnetization (m = 0):
it is the absolut minimum of the free energy functional,
ϕ in (T, m) space. For undercritical temperatures,
the absolute minimum is no longer the disordered
state, but there still exists a local minimum at m = 0,
which can be associated to an undercooled, metastable
disordered state, and which survives in the temperature
range Tc > T > Ts = γ/q since, in this interval, it is
∂mϕ|m=0 = 0 and ∂mmϕ|m=0 > 0.

The droplet expansion performed in [16] predicts, how-
ever, a disappearance of the metastable range in the
thermodynamic limit. The free energy of the disordered
phase is computed from the following series, in which
each term is the free energy of clusters of area ℓ ([10, 16]):

F (β) ∝

∞
∑

ℓ=1

ℓ−τe(β−βc)ℓ−ωℓσ

(3)

being ω the interface tension and σ, τ non-geometrical
exponents discussed in the work. Replacing the discrete
sum by an integral, and making certain assumptions on
the form of the inteface tension from previous known re-
sults, an expression for the free energy of the disordered
phase is found and compared with numerical data for
the free energy cumulants. From this free energy and for
finite-size systems of area A, a probability distribution,
Pβc,A(e), for the energy at the critical point is also
found. It is possible to obtain a former probability
distribution, Dβ,A(e), for temperatures lower than the
critical point, by a reweighting of P . lnDβ,A(e) is
proportional to the free energy functional ϕA in (β, e)
space. In finite-size systems, a local maximum of ln D
with high energy exists for undercritical temperatures.
It corresponds to a metastable state, different from the
global maximum, correspondig to the ordered phase
at low energy. Metastability is characterized by a
barrier separating the local and global maxima of lnD,
which ends at its local minima, and by a “spinodal
temperature” below which the barrier dissapears. Due
to the singular behavior of the free energy at βc, D is
strongly size dependent for β > βc and e lower than
the equilibrium energy at βc, and this fact leads to a
shrinking of the metastable range to zero for large sizes:
the spinodal temperature converges to βc.
In subsection III C we compare the properties of this
spinodal temperature with the one we find in our
dynamic analysis.

III. DYNAMIC ANALYSIS

A. Method and general features of the dynamics

The dynamic evolution of the model is studied using
the single-spin dynamic Monte-Carlo method to solve
the time-discretized Master equation for the probability
P (C, t) of the system to be in a given color configuration,
C = {ci}i, at time t:

d

dt
P (C, t) =

N
∑

i

q
∑

c

{P (Cci→c, t) ω(i, ci,Cci→c) (4)

−P (C, t) ω(i, c,C)}

where ω(i, c,C) is the rate of changing the color i
into color c, and Cci→c is the configuration C with
the i-th spin flipped to colour c. The expression
for the transition rates we use is the Metropo-
lis rule [4, 26], ω(i, c,C) = min{1, e−β∆E}, where
∆E = H [Cci→c]−H [C] is the energy change of the flip,
and H [C] is the energy of the configuration C, eq. (2)).

In this work we have studied the dynamics of the model
with q = 8, 12, 24 in 2d-square lattices of linear size
L = 62, 125, 250, 375, N = L2 sites, and periodic toroidal
boundary conditions. In Fig. 1 we show the energy per
site, e vs. time for the dynamics at several values of the
inverse temperature β, just above the critical inverse tem-
perature βc, in a system with q = 24, L = 125. A com-
pletely uncorrelated configuration is used as initial con-
dition. We average the energy over different realizations
of the initial condition and of the random sequence used
in the Metropolis algorithm, and the result is the energy
per site e. In other words, e(t) =

∑

{C} P (C, t)H [C]/N ,

with P from Eq. (4).
For low enough β, the two-step relaxation, characteriz-
ing dynamic metastability [6, 8], is observed. Single re-
alizations of the quench remain in a stationary phase, in
which the temporal average of the energy (v. inset of
Fig. 1) is constant, up to a certain time. Let us call
τN (q, β, L) the realization-averaged time taken by the
system to nucleate, i.e., to escape from the metastable
phase and its corresponding plateau and such that it
achieves the equilibrium energy of the ordered state at
β for t >> τN (q, β, L).

The inset of Fig. 1 reports the behavior of two re-
alizations, one featuring the nucleation event and one
remaining in the metastable phase up to 2 105 Monte-
Carlo Steps per Site (MCSS) at β = βc + 0.015. We
see that for the three inverse temperatures closest to
the critical one, almost no realization nucleates up to
105MCSS (i.e., it seems that τN (q, β, L) > 105MCSS for
(β − βc)/βc < 0.011 while, the lower the temperature,
the shorter is the average nucleation time τN taken by
the system to leave the metastable phase.
From Fig. 1 and from the analysis of the single real-
izations, we observe that still at (β − βc)/βc ∼ 0.017
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FIG. 1: (color online) Energy per site (e) vs. time (t) of the 24-
color Potts model in an L = 250 lattice after a quench to different
inverse temperatures βi = βc +0.005 i, i = 1, 2, ..., 10. On inset we
show two particular realizations of the quench at β = βc + 0.015,
one which nucleates and the other one which does not, up to 2 105

MCSS. The horizontal (blue) line is at ethr = 1.2 (see text). Error
bars are the variance over the set of different realizations.

there are some realizations of the quench which present
a very brief stationary phase. For (β − βc)/βc =
0.020 ± 0.0028 this regime is no more observed, so we
can roughly say that the metastable phase exists in the
inverse temperature range [βc(q), βsp(q, L)] with 1.017 <
βsp(q, L)/βc(q) < 1.02 for q = 24, L = 250. The so esti-
mated spinodal inverse temperatures are shown as verti-
cal segments in figure 3 for all the q and L studied values,
and compared with the ones computed as we will describe
in subsection III B.
This picture corresponds to the dynamic metastability
limit [1, 27], occurring at a temperature Tsp < Tc. Let,
again, be τN (T ), T < Tc, the time, averaged over re-
alizations and initial configurations, taken by the sys-
tem to nucleate when it is prepared in a configura-
tion compatible with the metastable state at T , and
when it evolves with the dynamics at T . If τR(T ) is
the relaxation time of the disordered phase, then we

have that, for the metastable phase to be observed at
a temperature T < Tc, the nucleation time must be
much larger than the time of equilibration of the liquid,
τN (T ) > τR(T ). When lowering the temperature the
relaxation time increases while, conversely, it is possible
that the metastable phase becomes more and more unsta-
ble, and the nucleation time decreases. This behaviour
leads to a temperature, the spinodal temperature, Tsp

for which τN (Tsp) = τR(Tsp), and below which the su-
percooled phase cannot be conceived due to the fact that
crystal nucleation becomes faster than the equilibration
of the liquid in the supercooled phase. From a general
point of view, this is important as far as, in this circum-
stance, the existence of a supercooled phase under Tsp,
and of the corresponding glass, unstable with respect to it
[1], are limited by pure dynamical reasons; this dynamic
limit to metastability is presented [27] as a possibility
of avoiding the Kauzmann paradox, not related to the
Adam-Gibbs-Di Marzio picture (see [1, 2]), a possibility
already mentioned by Kauzmann himself [5]. To avoid,
on the other hand, this kinetic limitation, allowing the ex-
istence of the glass at every temperature, we would need
τN (T ) > τR(T ) for every temperature under the critical
temperature, and in this way we would have glass, su-
percooled and crystal phases well defined dynamically at
a time t, and characterised, respectively, by the condi-
tions t < τR, τR < t < τN , t >> τN . The condition
τN (T ) > τR(T ) to be satisfied for arbitrary low tem-
peratures, however, would require the nucleation time to
have a minimum at a certain temperature, below which
it increases with decreasing temperature [1]. Although
this is not observed in our under-critical region, where
metastability is present, a similar process, or a slowing
down of the dynamics for decreasing temperature, is ob-
served in the q-PM model, but at very low temperatures
[28, 29], well far the metastable region, when the coars-
ening with highly localized domain walls dominates the
dynamics, and where this temperature-decreasing “nucle-
ation time” would no longer correspond to a nucleation
from a metastable phase, that was already suppressed at
the much higher temperature Tsp.
In our undercritical region, we observe, indeed, for finite
size systems, the opposite situation, or the kinetic limit
to metastability. This phenomena has been recently ob-
served by Cavagna et. al. [27] in a lattice model with
short range 5-body interactions and no quenched disor-
der. In [27], it is also discussed whether a lattice model
with no a priori disorder can reproduce the character-
istic features of structural glasses and reproduce such a
kinetic spinodal temperaure. In this work we give nu-
meric evidence that an effective spinodal temperature is
also present in the finite-size versions of the q-PM (see
the finite-size analysis in subsection III C). In analogy
with the work of Cavagna et. al. [27], we then now
perform a study of nucleation and relaxation times, and
we will show how, for a system of a given size, L, with
L = 62, 125, 250, 375, the spinodal inverse temperature,
βsp(q, L) estimated (as done above for q = 24, L = 125)
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from the analysis of Fig. 1 coincides with the tempera-
ture at which the condition τN ∼ τR is satisfied.
It may be important to emphasize, however, that the
concept of spinodal temperature, below which no real-
ization of the quench is metastable, is not well defined
beyond mean field: fluctuations make the transition from
metastability to non-equilibrium something depending
on the realization, even in the thermodynamic limit. See
at this respect the work [30], where the ‘spinodal’ field
for the Ising model first-order transition is computed as
the field at which half of the computed realizations sur-
mounted a free energy barrier during its path in phase
space from the metastable initial condition to the stable
state. The crossover from non-equilibrium to metasta-
bility, however, is expected to be vey sharp, and this as-
sumption allows our definition of spinodal temperature.

B. Nucleation and relaxation times

We now present the computation of the nucleation
and relaxation times in the metastable plateau described
in the previous section, and computed from the data
there presented.
The relaxation time of the liquid, both stable and
metastable, can be characterized by means of the
temporal single-site correlation function, C, as the
characteristic time below which C decreases very fast.
The correlation function for the model is:

C(t, tw) =
q

q − 1
〈

1

N

N
∑

i

δci(tw),ci(t+tw) − 1/q〉 (5)

where the average 〈 〉 is over different realizations
of the quench. In equilibrium, stable or metastable,
C is no longer function of tw (differently from what
happens when T < Tsp, when all realizations break
time-translational invariance), and has a characteristic
time that seems to diverge (see below) at a temperature
lower than the critical temperature. The fit of C with
a stretched exponential function, C(t) = exp(−(t/τ)γ)
is good for all temperatures higher than the critical
temperature. However, in the metastable region, C(t)
behaves differently from a stretched exponential for
small times, and the relaxation time, computed from
such a fit, supposes an underestimation of the relaxation
time, τR. For this reason, we estimate τR as the
time, averaged over realizations, taken by the temporal
correlation function to decrease to a given thresold,
Cthr. Varying this value from Cthr = 10−2 to 5 10−4

the obtained relaxation time curves are similar. We set
from now on Cthr = 5 10−3.

In Fig. 2 we show τR so computed for different in-
verse temperatures. The results of Fig. 2 indicate that
τR(q, β, L) is a decreasing function of q, and an increasing
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FIG. 2: (color online) Relaxation and nucleation times, τR and
τN (the latter for β > βc, squares) of the metastable phase for q =
8, 12, 24 (decreasing relaxation times) and L = 125. Continuous
lines are fits with the function f(β) = a exp(δ(±1/(T − T0))γ ).
The vertical black line marks the critical point. From this data,
βsp(q, L) is estimated as the inverse temperature at which the fits
of τN and τR cross (the vertical green line shows this point for
q = 12). On inset we show nucleation and relaxation times for
q = 12 and L = 62, 125, 250, 375 (increasing τR). For clarity, τR

error bars are not shown on inset. The data of τN do not correspond
to the nucleation time for β > βsp, region in which the metastable
phase does not exist any longer (see text).

function of L and β, in the studied intervals. Below the
critical temperature, it seems to diverge at a low temper-
ature: its T -dependence can be fitted with the function
exp(δ/(T0 − T )γ) [1, 27].
Figure 2 also shows the nucleation time. It is estimated as
the average time taken by the system to leave the plateau,
and decrease in energy until a given threshold, ethr(q).
This approximation for the estimation of the nucleation
time assumes that the average time taken by the formed
critical droplets (at t = τN ) to grow until the energy has
reached the threshold, is negligeable with respect to τN

itself [4]. We have set ethr(q) below the plateau energy,
at a distance which is roughly three times the variance
of this energy (error bars of Fig. 1). Again, the com-
puted spinodal temperature is not sensible to the choice
of ethr(q) if one varies its value in an interval of radius
10−2.
According to this data we can state that τN (q, β, L)
seems to diverge in the β → βc limit, with a law of
the type a exp(δ/(Tc − T )γ), and that, near the criti-
cal temperature, it decreases with q and L (see the next
subsection for an analysis of these facts from the point
of view of the work of Meunier and Morel).
The β-dipendence exp(δ/(Tc−T )γ) of τN can be justified
with nucleation theory if one assumes that the bulk free
energy density between metastable and stable phases, ∆,
is proportional to β − βc. The free energy cost related
to the formation of a d-dimensional droplet of radius R
and volume V (R) can be written in nucleation theory as

F (R) = V (R)
d−1

d ω − V (R)∆ and, for a critical droplet,
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it is:

Fc =
(d − 1

∆

)d−1(ω

d

)d

. (6)

If now one sets: d = 2, ∆ ∝ β − βc, and τN ∝ exp βFc,
it is, for some δ, τN ∝ exp(δ/(Tc − T )).

As explained in section III A, the spinodal temperature
can be defined with the condition τN (Tsp) ∼ τR(Tsp).
In Fig. 2, the dotted vertical line indicates for q = 12
the spinodal inverse temperature βsp, at which the fits
of the functions τR(q, β, L) and τN (q, β, L) cross. The
results for βsp are presented in Fig. 3 and analyzed in
section III C.
It is important to stress that, as already said in sec III A,
the data of τN do no longer correspond to the nucleation
time for inverse temperatures larger than the spinodal
inverse temperaure, for which the metastable plateau
does not exist. In this regime, neither τR corresponds
to the relaxation time of the metastable phase, and its
value may depend on the chosen time in which it is
measured, since the temporal correlation function does
not satisfy time-traslational invariance, i.e., C(t, tw) may
depend on tw.

C. Finite-size study

From Fig. 3 one can see that βsp decreases with
L in the studied interval. The linear fit of Fig. 3
can be taken as a numerical evidence of the fact
that the spinodal temperature converges to the crit-
ical temperature in the large-L limit. On the other
hand, we see that βsp−βc increases with q for equal sizes.

These two facts can be justified with the droplet ex-
pansion. The convergence of the spinodal temperature
to the critical temperature is one of the main results of
[16] (see sec. (5.1)). The increasing of the metastable in-
terval for increasing q can be viewed from the form of the
probability distribution Dβ,A(e) mentioned in section II
(from sec. 4.2 of [16]). For β < βc, it is (rescaled for all
q > 4):

Dβ,A(ǫ) = A2
r

2

3
(Ar|ǫ|)

−7/3 exp
(

− (Ar |ǫ|)
2/3

)

. (7)

expArǫz

where ǫ = aξ(q)1/2(e − eeq), Ar = a−1ξ(q)−2A and z =

ξ(q)3/2(β − βc) are the rescaled energy, system area and
temperature, respectively, ξ(q) is the critical correlation
length of the q-PM [25], eeq is the equilibrium critical
energy and a is a constant in q and β. Equation 7 is only
valid for e < eeq. The logarithm of D is proportional to
the free energy functional in (T, e) space. The second line
of (7) is the β-dependent reweighting, which leads, for
large enough |z| to the local minimum of D characterizing

0 0,05 0,1

L
-1/2

1

1,01

1,02

1,03

β
sp

/β
c

q=24
q=12
q=8

FIG. 3: (color online) Spinodal inverse temperature, βsp, com-
puted as described in caption Fig. 2, for all the studied q’s and
sizes. The fit is linear and can be taken as an evidence of the fact
that the spinodal temperature converges to βc in the large L limit.
Vertical segments are the estimation of βsp(q, L) computed as de-
scribed in subsection III A: the inverse temperatures above which
the plateau is no longer observed. The agreement between the two
ways of estimating βsp can be noticed.

metastability, at, say, e = em(z). This minimum is at a
rescaled energy ǫm ≡ aξ(q)1/2(em − eeq) such that the
derivative of the logarithm of D in (7) is zero:

7

3
|ǫm|−1 +

2

3
Ar|ǫm|−1/3 = Ar|z| (8)

or, in non-rescaled variables:

7

3
|e − eeq|

−1 +
2

3
A2/3ξ(q)−1|e − eeq|

−1/3 (9)

∝ A|β − βc|.

We see that for increasing q’s the minimum em occurs at
larger values of β − βc, since ξ is a decreasing function
of q. The spinodal inverse temperature is the β value for
which em coincides with the inflexion point, e∗, of the
functional free energy, em < e∗ < eeq and above which
the local minimum of D is no longer found (see [16]). As
far as this inflexion point does not depend on q, also the
metastable range βsp − βc increases with q.
Assuming the Arrhenius hypothesis mentioned in the
introduction, the lifetime of the metastable phase is
proportional to the barrier between the metastable
maximum and the local minimum of lnD, as said in sec
5.1 of [16]. In the z →+ 0 limit, the minimum ǫm(z)
in (8) diverges with a law: Ar|ǫm| = (2

3 )3|z|−3, and
Dβ,A(ǫm(z)) converges to zero in this limit. Thus, the
difference between the ln D values in the metastable
maximum and in the local minima at ǫm(z) diverges for
z → 0, and this justifies the divergence of the nucleation
time in the limit β →− βc found by us numerically (see
Fig. 2).
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The minimum of lnDβ,A(e) is at the energy em at which
critical droplets are formed. For temperatures near
the critical point, this energy becomes very low, and
the time needed for the formation of droplets of such
a low energy diverges. On the other hand, for lower
temperatures em increases and the size of the critical
droplets decreases, in such a way that near Tsp the time
required for the formation of critical droplets is lower
than the relaxation time of the fluid, and metastability
disappears.
Finally, we see from (9) that, for fixed area and temper-
ature, em decreases for increasing q. Since D decreases
with q for fixed area and temperature and increases with
e for em < e < eeq, then we have that Dβ,A(ǫm(β)) is a
decreasing function of q. Using the Arrhenius hypothesis
between free energy barriers and escape times, this
justifies the increasing behavior of τN with q for equal
temperatures and system sizes observed in Fig. 3.

In agreement with [16], these results seem to confirm
that metastability in this model is essentially different
with respect to the field-driven transition Ising case, in
what concerns its dipendence on system size (see [31]),
and also with respect to the dyamond-graphite paradigm.
The fast vanishing of the metastable regime presented
here can be understood as a call to caution when in-
terpreting hysteresis cycles performed for the q-PM in
past or future articles: if the step in β, ∆β of the cool-
ing at a rate ∆β/∆t is larger than the corresponding
size-dependent metastable interval βsp − β, then none
of the points of the hysterisis dyagram would corre-
spond to metastable states, but rather to heterogeneous,
non-equilibrium configurations, which have already nu-
cleated.

IV. CONCLUSIONS AND FURTHER

RESEARCH

We have studied the metastable dynamics of the
two-dimensional q-state Potts model (q = 8, 12, 24) for
temperatures below the critical point, by means of a
Monte-Carlo algorithm with local Metropolis updating
rule. We observe, for sufficient high temperature,

the energy plateau and the two time-scale relaxation
characterizing dynamic metastability. In systems of
finite size, L, this phase is described by the functions
τN (q, β, L), βsp(q, L), which are, respectively, the nu-
cleation time and the limit of the supercooled phase,
below which the system is no longer stationary nor
time-translational-invariant. Our numerical simulation
provides a set of values of the mentioned functions, from
which we obtain their properties, that we summarize
below. All of them are in agreement with the results
obtained from the droplet expansion for the 2d-Potts [16].

1. τN (q, β, L) → ∞ for β →+ βc.
2. τN (q, β, L) increases with q.

3. βsp(q, L) decreases for increasing L, and seems to
converge to βc(q) in the large-L limit.

4. βsp(q, L) increases for increasing q.

We propose to perform a systematic quantitative
comparison between nucleation times and metastability
limits computed dynamically and the ones predicted
by the droplet expansion, or by a restricted-partition
function analysis. We also propose to improve the
measure of τN by analyzing nucleation effects locally,
i.e., formation of critical droplets.
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65 20 (2004); M. J. de Oliveira, A. Petri and T. Tomé,
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