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The dynamics of the 2D Potts ferromagnet, when quenched below the transition
temperature, is investigated in the case of a discontinuous phase transition. This is
useful for understanding the non-equilibrium dynamics of systems with many
competing equivalent low-temperature phases, which appears not to have been
explored much. After briefly reviewing some recent findings, we focus on the
numerical study of quenches just below the transition temperature on square
lattices. We show that, up to a certain time, metastable states can be observed, for
which energy stays constant above the equilibrium energy and the self-correlation
function displays a fast decay.

Keywords: phase transition; lattice dynamics; metastability; non-equlibrium
phenomena

1. Introduction

The way in which thermodynamical systems attain equilibrium when driven through
a phase transition has been the subject of much work [1–4]. In fact, while equilibrium
generally requires an infinite time to be reached, different dynamical regimes can be
observed, which often present peculiar properties (different kinds of dynamic scaling,
critical slowing-down, spatial self-affinity, etc.) depending on the thermal history and the
system. The dynamics of different phase transitions have been widely investigated, e.g.
from a disordered to an ordered phase, or between two ordered phases. Among the model
systems, the Ising model displays both instances: in zero magnetic field it undergoes
a continuous phase transition from the high-temperature paramagnetic phase to the low-
temperature ferromagnetic phase; the transition is discontinuous when at constant low
temperature, and the external magnetic field is reversed. Both problems have been widely
investigated. In the first case, one of the main results is contained in the Allen-Cahn law
for the ordered phase domain growth at low temperature, which predicts a power law
decay of the energy ’t�1/k, with k¼ 2, 3 [1,2]. In terms of the second case, the metastability
associated with the field-driven first-order phase transition has been studied with
nucleation theory and its generalizations [3,4], which describe effectively the nucleation
time and other features of the metastable states [4–7].

In contrast, not many results seem to be available for the ordering dynamics of systems
possessing many equivalent ordered phases [1]. On one hand, the coarsening at low
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temperature presents peculiar properties not well described by the Allen-Cahn theory. This

is predicted on a general bases by the Lifshitz criterion [8], according to which, a system
possessing many equivalent ordered phases may equilibrate towards non-homogeneous

phases when quenched below its critical point, if their number is larger than the real space

dimensionality. Thus, equilibrium phases at low temperature may not be uniquely defined
and systems may display complex behavior. On the other hand, unlike the Ising case, there

exists little theoretical study of the metastability near the temperature-driven transition of

the 2D q-Potts model (which is the first order for q44). A recent study [9] predicts in
particular that, for this model, metastability is a finite size effect. The study is based on

a droplet expansion and, to our knowledge, has not yet been related to the underlying

dynamics [10] (metastability in the Potts model has been investigated with different aims in
[11], and for the field-driven transition in [12]).

The aim of the present paper is to summarize some recent findings on the dynamics of

the d¼ 2 Potts model [13] and to present some new results concerning metastability in the

undercooled states just below the transition. Investigation of temperature-driven
metastability in this model seems particularly important for several reasons: the model

is interesting in itself, being an effective model for systems with many possible broken
symmetries, and mimics the dynamics of a large variety of real systems, such as gas

adsorption [13], froth [14], grain growth [15], and biological cell [16,17]. On the other hand,

as mentioned before, the existence (or not) of metastable states associated with the
temperature-driven first-order transition of the Potts model, is an old problem, first

proposed by Binder [10], and which still remains open.
The next section briefly recalls the Potts model and presents a brief review of some

recent findings on its dynamics on the square lattice in different temperature regions
below the transition temperature. After introducing some elementary notions about

metastable states in thermodynamical systems and a brief discussion on some recent

findings concerning the metastable states of the Potts model, Section 3 points out the
presence of metastable states for the model on square lattice simulations in terms of

energy and the self-correlation function. Section 4 presents a short summary and

perspectives.

2. Potts model dynamics below the transition temperature

The Potts model is described by a Hamiltonian of the kind [13]:

Hf�g ¼
X
hiji

ð1� ��i,�jÞ, ð1Þ

where �i is the state of site i that can assume one out of q different values, usually identified
by an integer: �i2 [1, q]. When q¼ 2, Equation (1) reduces to the Ising Hamiltonian (within

multiplicative and additive constants). Here, the case of nearest neighbor interactions on

a square lattice will be considered. It presents a discontinuous equilibrium temperature-
driven phase transition at Tq for q44 [13].

The non-equilibrium dynamics of the Potts model presents several peculiar features.

For example, the determination of the domain growth exponents in the Allen-Cahn law at

low temperature remained problematic for a long time [14,18], whereas it was just an
artifact of the residual energy [19,20] (see below). From a general point of view, a recent
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survey on the different dynamical regimes displayed by the Potts model has been done by
Ferrero and Cannas [21]. These regimes are observed in numerical realizations of the
system when they are cooled below the transition temperature Tq, and depend on the final
temperature T that, according to the dynamical features, can be grouped into roughly
three different ranges [21], delimited by the temperatures 05Tg5T*5Tc5Tq.

. For T*&T5Tc relaxation is dominated by simple coarsening, which follows the
quench according to the Allen-Cahn law [1] for the growth of the domain size,
with energy per site decaying as: e(t)’ t�1/2.

. For Tg &T&T* the simple coarsening is interrupted at long time-scales and the
system is trapped with finite probability in some configurations of high symmetry,
with characteristic lengths that grow with the system size [21]. These states can be
identified with those predicted by Lifshitz, from which the system escapes by
activated dynamics.

. For T&Tg the system gets stuck in some kind of frozen or glassy states with well-
defined lifetime, which diverges with T! 0 as ec/T [21]. An interesting aspect
[20,22,23] is that during relaxation the system obeys a generalized Allen-Cahn law
which includes an additive constant e0:

eðtÞ ’ e0 þ a � t�1=2:

The value of the constant corresponds to the average energy of the glassy states at
zero temperature [23]. The existence of freezing at zero temperature and the role
of activated process at low temperature was first pointed out by Vinals and Grant.
Domains are pinned by some local finite energy barrier [24,25] which cannot be
overcome if T’ 0. For low finite temperature these states present a lifetime
independent of the system size [21], which is determined by the predominance of
the activation time with respect to the equilibration time [24].

In addition to the above temperature ranges it is seen that, in the range just below the
transition Tq, some metastable states with energy and structure similar to the disordered
phase can be observed [21,26]. Investigation of the nature of these states is the subject of
the next section.

3. Metastable states

3.1. Theoretical premises

The existence of metastable states just below a discontinuous transition is predicted by
phenomenological theories like the Van der Waals equation for liquid–gas transitions [3]
and are a general feature of theories with mean-field or long-range interactions [4]. As in
the Van der Waals equation, metastable branches appear as a continuation of the stable
branch beyond the transition point, and have to be replaced by the coexistence curve,
e.g. via the Maxwell construction. Along these branches the metastable state is
thermodynamically stable as long as the second free energy derivative is positive and
the escape from the local minimum takes places via thermal activation. The theory of
Ginzburg and Landau takes into account localized fluctuations, but these cannot be very
large, therefore excluding interesting regions from its range of validity, like the one
around the critical temperature. At the end of the metastable branch, is the spinodal point.
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There, the second derivative of the free energy changes sign, making the whole system

unstable. The decay to the stable phase is global and quick.
Beyond the mean field, statistical mechanics of short-interacting systems cannot

account properly for metastability, since the partition function in ensemble theory is

dominated by the global minimum of the free energy functional in phase space.
At equilibrium, metastable states in short-range systems with translational invariance

are thermodynamically forbidden by stability requirements [27], although they can be

obtained by setting specific constraints to the accessible phase space, or taking suitable

limits in some perturbative approaches [4]. The constraint is related to a time-scale, up to

which the metastable phase does not explore the whole available phase space. In this

context, in the droplet theory for the condensation of the field-driven Ising transition [5],

the fluctuations neglected in mean-field approaches give rise, locally, to droplets of the

stable phase. An ensemble of non-interacting droplets of the stable phase is considered,

its growth being favoured by the bulk free energy, which is lower in the presence of an

external field, and hindered by the surface tension. The model has been extensively tested

in two and three dimensions [7].
Meunier and Morel [9] considered an adaptation of the droplet approach to the 2D

Potts model. According to their findings, for the T-driven Potts model transition, unlike in

the Ising case, the growth of the droplet just below Tq is favored by the tendency to lower

the total energy of the system (the interface perimeter between droplets), in favor of the

system entropy (which increases where many small droplets are present). In this case, the

ensemble of droplets is also different with respect to the Ising case in that droplets have an

intrinsic entropy, and can assume different shapes. The theory by Meunier and Morel

leads to a temperature range in which metastability is present in finite-size systems, a range

which, however, shrinks to zero in the thermodynamic limit. This behavior, related in

some way to the anomalous growth of fluctuations with the system size near the critical

point, has, to our knowledge, not yet been confirmed by dynamic calculations.

Investigation of metastable states from a pure dynamical point of view seems, therefore,

to deserve interest.

3.2. Some numerical results

Numerical simulations of the Potts model with more than four states in 2D, constitutes

a very stimulating and effective way of investigating the nature of metastable states in

systems with many low-temperature stable phases.
A way of identifying metastable states just below the transition temperature is to look

at the time behavior of the energy per site, e(t). As a test system we have considered the

Potts model on square lattices with q¼ 12, 50. Simulations have been performed by

preparing the system in the high-temperature disordered phase and then quenching it by

Metropolis dynamics below the transition temperature Tq.
For the q¼ 12 system, for which¼Tq¼ 1/�q¼ 0.668, we have taken the quench inverse

temperature at �¼ �q � þ j � 0.005, with j¼ 1, . . . , 10. The resulting time behavior for lattices

of size L¼ 250 is shown in Figure 1. Each line is obtained by averaging over 50 different

realizations of initial conditions and thermal noise, and the errors are the resulting

standard deviations. It is seen that for temperature close to Tq, e(t) stays stationary

(a signature of metastability [4]) until large times, at an excess energy with respect to the
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equilibrium state. The existence of these metastable states is in agreement with [9], who

however predict their disappearance in the thermodynamic limit.
From the point of view of the local dynamics, if the system is in a metastable state just

below the transition temperature, it is expected to be indistinguishable from one in

equilibrium. This property is reflected in the time behavior of the self-correlation function.

In the equilibrium disordered phase (T4Tq), this function displays a fast (exponential)

relaxation. The same behavior is therefore expected for the metastable states below Tq, but

will no longer be true after the decay towards the stable state has begun. The correlation

function computed waiting different times tw after the quench time and should therefore

signal this decay through the onset of a slower decay (ageing). The self-correlation

function can be computed as

cðt, twÞ ¼
1

q� 1

q

N

X
��iðtþtwÞ, �iðtwÞ � 1

� �
, ð2Þ

where tw is the time elapsed after the quench before starting the computation, and the sum

is over all the lattice sites (to reduce statistical fluctuations, averages over different

realizations of initial conditions and thermal noise can be taken).
As mentioned before, it is expected that for tw short enough the relaxation is fast.

Figure 2 shows c(t, tw) for different tw for a system with q¼ 50, L¼ 100 and T¼ 0.470,

being Tq¼ 0.479. Curves are obtained by averaging over 10 realizations (except one

indicated in the legend). It is seen that after a very short transient time, c(t, tw) becomes

translationally invariant for long periods of time, also showing no dependence on the size

in the investigated range.
Figure 3 shows c(t, tw) vs. time t for q¼ 50, tw¼ 1000 and different temperatures.

Ageing becomes larger when the temperature is decreased, showing that the system is

already relaxing towards the ordering phase.

100 1000 10000 1e+05

t (MCS)

0.5

1

e

Figure 1. Time behavior of the energy per site, after the quench of the model with q¼ 12 at different
quenching temperatures below Tq (see text). The quenching temperature increases from bottom to
top.
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These results show the existence of well defined metastable states on square lattices of
finite size. The question of their existence in the thermodynamic limit is, however, open.
Meunier and Morel [9] have recently faced the problem by investigating the energy
probability distribution at the transition temperature, concluding that metastability is
observable only in systems of finite size, the anomalous growth of energy fluctuations near
the critical point being the origin of this fact. However, their analysis does not focus on the

1 100 10000 1000000

t

0.0

0.2

0.4

0.6

0.8

c(
t,t

w
)

tw=1
tw=1000
tw=10000
tw=50000

tw=106  (9 real.s of 10)
L=400 tw=50000

Figure 2. Time behavior of the self-correlation function for different waiting times for a system with
q¼ 50. The lattice is L¼ 100 in size and the quench is at the temperature T¼ 0.470 (Tq¼ 0.479).

1e+00 1e+02 1e+04 1e+06

t

0.0

0.2

0.4

0.6

0.8

1.0

c(
t w

,t)

T=0.40
T=0.41
T=0.42
T=0.43
T=0.44
T=0.45
T=0.46
T=0.47
T=0.49

Figure 3. Time behavior of the self-correlation function for tw¼ 1000 after quenching at different
temperatures below Tq¼ 0.479. At low temperatures ageing appears.
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microscopic mechanisms behind this shrinking of the metastability interval for increasing
system size. It would be very interesting to have a description of this phenomenon in terms
of microscopic clusters, and to compare the nucleation mechanism in this case with the
predictions of classical nucleation theory for the field-driven Ising case.

According to nucleation theory the finite lifetime is usually determined by the time
needed by the system for nucleating a drop of the stable phase bigger than the critical size.
At the same time, as mentioned above, the metastable state displays short relaxation times
similar to the high-temperature phase. The latter usually increase when the temperature
decreases, and may happen to become equal to the nucleation time at a certain
temperature Ts. This temperature corresponds to a pseudo-spinodal point [28] and sets
a limit on the observability of undercooled metastable states. The first point is thus to
establish if Ts5Tq even for infinite systems, or if the two temperatures merge. Another
point concerns the growing dynamics following the nucleation. In the Ising model the
metastable state nucleates a critical droplet that afterward grows very fast because of its
favorable free energy, with respect to the unstable phase. In the temperature-driven Potts
model, however, each phase is equivalent to the others and competes with them for
growth.

4. Conclusions

We have discussed some aspects of the off-equilibrium dynamics of the q44 Potts model
quenched below the transition temperature. We believe that this can be relevant for
understanding the non-equilibrium and the ordering dynamics of systems below a first-
order phase transition temperature, in the presence of many competing equivalent ground
states. After recalling some recent findings we have focused on some characterizations of
the undercooled metastable states, which are observable after a quench below the
transition temperature. These states display a finite lifetime (which depends on the
temperature) and are detectable through the existence of a plateau in the energy (well
above the equilibrium energy) and the fast relaxation time. Since their existence in the
thermodynamical limit has been questioned by recent work, more extensive numerical
simulations will be necessary to support this statement. More work in this field is also
highly desirable for understanding the detailed mechanism, through which a system starts
to order after the quench in the presence of many degenerate states, which is not yet well
established.
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