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Space–time correlation of earthquakes
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S U M M A R Y
Seismicity is a complex process featuring non-trivial space–time correlations in which several
forms of scale invariance have been identified. A frequently used method to detect scale-
invariant features is the correlation integral, which leads to the definition of a correlation
dimension separately in space and time. In this paper, we generalize this method with the
definition of a space–time combined correlation integral. This approach allows us to analyse
medium-strong seismicity as a point process, without any distinction among main, after or
background shocks. The analyses performed on the catalogue of worldwide seismicity and the
corresponding reshuffled version strongly suggest that earthquakes of medium-large magnitude
are time clustered inside specific space–time regions. On the basis of this feature, we recognize
a space–time domain statistically characterized by sequences’ behaviour and a domain of
temporal randomness. Then, focusing on the spatial distribution of hypocentres, we find another
domain confined to short distances and characterized by a relatively high degree of spatial
correlation. This spatial domain slowly increases with time: we interpret this as the ‘afterevent’
zone representing the set of all subsequent events located very near (about 30 km) to each
reference earthquake and embedded on specific seismogenic structures such as faults planes.

Key words: Persistence, memory, correlation, clustering; Fractals and multifractals; Earth-
quake interaction, forecasting, and prediction; Statistical seismology.

1 I N T RO D U C T I O N

Seismogenic sources demonstrate their resistance limit to stress

loading with the generation of earthquakes; stress is redistributed

to neighbouring areas, causing the aftershock sequence to develop

in space and in time. Stress is probably redistributed because a

sequence occurrence brings the medium to a new dynamic equi-

librium. This interpretation requires clarification of several issues;

one of them is the triggering of earthquakes. Short-range trigger-

ing (at a distance of the order of seismic source dimension) may

be sufficiently justified by stress changes induced by the main

shock. Long-range triggering is a more controversial topic, with

arguments of both physical and statistical nature. Experimentally,

some authors have recognized long-range triggering in real data (Hill

et al. 1993), most cases come from geothermal sites (Husen et al.
2004), but there are examples even in non-volcanic areas (Brodsky

et al. 2000). Godano et al. (1999) have shown, through a statisti-

cal approach, that for a seismic de-clustered catalogue to reach a

complete Poissonian behaviour, it is not sufficient to remove only

seismic events close in space after a main event, but it is necessary to

exclude long-distance short-time seismic activity too. Others have

proposed physical explanations, including Coulomb-stress modi-

fications (King et al. 1994; Stein et al. 1994; Stein 1999; Melini

et al. 2002; Marzocchi et al. 2003) and multiple stress transfer (Ziv

2006). Statistically, an interesting class of models has been pro-

posed invoking, for example, a cellular-automata-like behaviour of

the crust, considered in a critical state (Bak & Tang 1989). Earth-

quakes are the dynamic outcome of a very complex system whose

critical properties are accessible through the observation of the ex-

istence of scaling relations. Dynamic critical phenomena are very

well studied in physics: from the seminal review of Hohenberg &

Halperin (1977), a long literature has been developed, showing the

existence of time-correlation functions for critical point systems.

The advantage of assuming a critical state is that, at long distances,

a trigger effect can be obtained by a relatively small amount of

stress: rupture is achieved by a pre-existent load on a fault surface

plus a relatively small portion of far away produced stress, suffi-

cient to cause the event. This new event can itself produce a new

stress redistribution and so on. This chain of stress–strain transfer

can introduce an interesting component of the system considered

as a whole: a relation between space and time, both in short- and

long-range earthquake interactions. Several authors have attempted

to find space–time influence ranges after big main shocks in specific

regions and in worldwide catalogues. Influence regions of the or-

der of 100 km from main shocks are likely to occur (e.g. Gasperini

& Mulargia 1989; Reasenberg 1999). Interestingly, for the largest

earthquake of last century, Lomnitz (1996) found very long-range

correlation and a gap around 300 km, partly explained with a direc-

tional effect due to source geometry. Huc & Main (2003) and Marsan

& Bean (2003) addressed the issue of stress diffusion at global level.

They found that the mean triggering distance increases with time

very slowly compared with a normal diffusion process. They did not
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make any a priori assumption about the role of each event, consid-

ering every earthquake-–regardless of its magnitude—as a possible

triggering event of the following seismicity. Marsan et al. (2000)

investigated space–time relations of scale-invariance of seismicity

in three seismic catalogues differing in space and time ranges. They

pointed out that space and time should not be considered separately,

but rather the spatial correlation structure is evolving in time. This

implies migration of aftershocks away from the main shock. It takes

the form of a power-law growth with a small diffusion exponent

indicating a subdiffusive process.

Despite the wide interest and the richness of interpretations stim-

ulated by these topics, there are still open issues. Should long-range

triggering be considered to be a normal process, or rather it is a

rare occurrence limited to particular conditions (for example, the

presence of fluids)? Is there a limit of the influence area of an event?

Does it depend on the magnitude and elapsed time? Is the tradi-

tional division of seismicity into main, after and background real or

only necessary for a better comprehension of the phenomenon? To

address these questions, it is important to consider the spatial and

temporal aspects of the seismic process simultaneously, in a com-

bined way. In this work we apply a novel method of analysis (Tosi

et al. 2004), suitable to point processes and based on space–time

correlations among earthquakes. Like the previously cited authors,

we do not separate seismicity into main and aftershocks. We con-

sider medium-high energy global seismicity where every event can

be considered a potential main shock.

2 S C A L E - I N VA R I A N C E I N G L O B A L

S E I S M I C I T Y

In the time domain, a main shock is usually followed by aftershocks

with a decay rate described by the Omori law (Utsu et al. 1995).

This law, considering either its original version or its nested devel-

opment incorporated into the ETAS model (Ogata 1988), produces

a clustering of seismicity. For specific regions, the time clustering

has been evidenced through the fractal dimension of earthquake

occurrences (Smalley et al. 1987; De Rubeis et al. 1997). More-

over, there are evidences that clustering is varying over time, result-

ing in a multifractal distribution of earthquakes (Godano & Caruso

1995).

Space distribution of seismicity on a large scale follows the most

significant tectonic structures such as plate limits, large fault sys-

tems and volcanic complexes. Nevertheless, inside these preferred

regions, seismicity cannot be fully characterized by a defined distri-

bution. The concept of background seismicity has been postulated

in addition to sequence evolution, with the intention to better fit all

possible temporal and spatial behaviours. Despite all these efforts,

space location of seismicity remains problematic; for these reason

new approaches, such as scale invariance, have been investigated.

Quantification of this feature is possible through the definition of

the spatial fractal dimension of epicentres (Kagan & Knopoff 1980).

Very different values have been measured for different times in

specific areas (De Rubeis et al. 1993). Thus, for example, in Cen-

tral Italy, the background seismicity is recognized to have a rather

high spatial fractal dimension whereas shortly before and during

sequences, it displays much lower values (Tosi 1998). Other au-

thors have noted that spatial scale invariance is not homogeneous

and therefore a multifractal character has been evidenced (Hirata &

Imoto 1991; Hirabayashi et al. 1992; Dimitriu et al. 2000).

A frequently used method to analyse scale-invariance in seismic-

ity is the correlation integral (Grassberger & Procaccia 1983). It is

defined as.

C(l) = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

�(l − ‖xi − x j‖), (1)

where l is the metric of the space considered, N is the total number

of elements, x is the coordinate vector and � is the Heaviside step

function. If (1) scales like a power law, C(l) ∝ lD, the correlation

dimension D can be defined by

d(l) = δ log C(l)

δ log l
, D = lim

l→0
d(l). (2)

Experimentally, self-similarity can best be found by plotting the

local slope d of log C(l) versus log l (Kantz & Schreiber 1997).

We searched for self-similarity in global seismicity by using the

National Earthquake Information Center (USGS) catalogue for the

time period 1973–2004, with magnitudes M b ≥ 5.0. This catalogue

selection was conditioned by completeness criteria and it consists

of events with a magnitude distribution from medium to high.

The correlation integral applied to the earthquake occurrence time

t,

C(τ ) = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

�(τ − ‖ti − t j‖) (3)

is shown in Fig. 1 both on bi-logarithmic and local-slope plots.

The result is a very stable behaviour lasting over almost all the

scales investigated. The correlation dimension D (eq. 2) is well

defined. With least-square fit on the log–log plot in the time range

24 min to 3000 d we obtain D = 0.94, a value very close to the

embedding dimension (D = 1)—this means that, on a global scale,

the temporal distribution of seismicity can be considered to be very

nearly random.

The correlation integral applied to the earthquake spatial distri-

bution

C(r ) = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

�(r − ‖xi − x j‖), (4)

where x is the space coordinate vector, is shown in Fig. 2. Dis-

tances between hypocentres are measured in 3-D space and con-

necting points with the shortest straight line—this implies that two

hypocentres localized at two antipodal points on the earth’s surface

are separated by a distance equivalent to the earth’s diameter. For

space, a quite different behaviour is evident. For shorter ranges (from

3 to 30 km), the least-square fit reveals a high correlation dimen-

sion (D = 1.95); this value progressively decreases, reaching D =
1.20 for distances over 300 km. The error affecting the hypocen-

tral localization can increase the true dimension; nevertheless, the

value corresponding to short distances is far from the one of the

embedding space (D = 3), pointing rather at the value proper of a

smooth surface, probably the fault planes. The low dimension for

long distances reflects the fact that global seismicity falls on plate

boundaries, which are linear on such a scale.

3 S PA C E – T I M E C O M B I N E D

C O R R E L AT I O N I N T E G R A L

We know that seismicity is dominated by sequences that are clus-

tered in time and space, but this behaviour does not appear to

leave fingerprints in correlation integral analysis at a global scale

(Figs 1 and 2). The reason has to be found in the fact that, in the

calculation of C(τ ), earthquake pairs are counted regardless of their

spatial distances. In the same manner, in the calculation of C(r),
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Figure 1. (a) Correlation integral of global seismicity in time. Intertime τ

is expressed in days. (b) Local slopes of (a).

earthquake pairs are counted regardless of their time separation.

Seismicity is a phenomenon acting simultaneously in space and

time, and any attempt to separate these two aspects may result in too

drastic simplifications. It is with this spirit that we introduce here

a new approach leading to a self-consistent analysis of both spa-

tial and temporal correlations. We define the space–time combined

correlation integral as follows.

Cc(r, τ ) = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

[�(r − ‖xi − x j‖)

·�(τ − ‖ti − t j‖)]. (5)

This general definition include eq. (3) when r = rmax and eq. (4)

when τ = τ max. This generalization of the correlation integral can

be applied to every phenomenon described by a set of dimensions

with not comparable measurement units. The application to seis-

micity calls for a simultaneous analysis of four coordinates: three

spatial and one temporal. As a consequence, it will be possible to

calculate interdistances among events in both space and time units.

The combined correlation integral representation is no longer a 2-D

Figure 2. (a) Correlation integral of global seismicity in space: r is the

distance in km between hypocentres. (b) Local slopes of (a).

plot as for eqs (1), (3) and (4), but is a surface plot (Fig. 3). Actually

for any data set having no connection between time and space, Cc

(r, τ ), for each r and τ , is the product of the respective correlation

integrals that, in this case, can be viewed as the probability to find

pairs up to that value of r and τ .

Cc(r, τ ) = C(r ) · C(τ ). (6)

Similarly to eq. (2), we define the time correlation dimension Dt

and its local slope dt as

dt (r, τ ) = ∂ log Cc (r, τ )

∂ log τ
, Dt (τ ) = lim

τ→0
dt (r, τ ), (7)

and the space correlation dimension Ds with its local slope ds as

ds(r, τ ) = ∂ log Cc (r, τ )

∂ log r
, Ds(r ) = lim

r→0
ds(r, τ ). (8)

Under the hypothesis of events distributed randomly and with-

out any connection between space and time, both dt and ds would

be constant for all r and τ , equal to the respective embedding di-

mension values. Under the different hypothesis of events with two
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Figure 3. Space–time combined correlation integral Cc (r, τ ). For r equal

to the maximum distance in the catalogue, the Cc surface reduces to the plot

in Fig. 1(a), whereas for τ equal to the whole time data span, Cc reduced to

the plot in Fig. 2(a).

independent space and time power-law total distributions, dt would

be equal to the total Dt for all r and ds, equal to the total Ds for all

τ .

4 T I M E C O R R E L AT I O N D I M E N S I O N

The correlation dimension varies between 0 and the value of the

embedding dimension, which for time is 1. Moreover, the corre-

lation dimension is a direct measure of clustering: having a set of

points with the correlation dimension equal to the embedding space

means that this set covers it completely. Conversely, a set with low

correlation dimension reveals clustering and, at limit, dt (r, τ ) = 0

means that all elements of the set are concentrated at a point (which

has the topological dimension equal to 0). The correlation dimension

is also related with the randomness content of the set. From statis-

tics we know that a random process occupies all the space available,

resulting in a statistically complete and homogeneous covering of

the embedding space.

In Fig. 4, we show the local slope of time correlation dimension

dt (eq. 7) for global seismicity data as a function of time interval

τ and hypocentral distance r. Values are represented only when the

number of non-cumulated pairs, in the corresponding space–time

bin, is greater than five. One clear time clustering domain appears,

with dt less than 0.5. On the contrary, for long time intervals and

large interdistances, the time correlation dimension is close to one,

indicating random occurrence. The time clustering is limited at rel-

atively small distances: this is an evidence of local time correlation,

typical of the sequence structures. The boundary between clustering

and random character is not located on a line with a constant r, but its

setting is function of space and time intervals among earthquakes.

The patterns observed in Fig. 4 significantly support the hypothesis

Figure 4. Local slopes of time correlation dimension dt (r, τ ) (in colour; white squares correspond to insufficient earthquake couple number) for global

seismicity. Dark contour lines represent the space–time combined correlation integral Cc (r, τ ).
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that earthquakes, inside specific space–time domains, do not behave

randomly, hence showing clustering (low dt values).

To check the validity of this experimental result, we applied the

same analysis to the global catalogue after a reshuffling procedure.

Reshuffling consists in randomly mixing the time occurrences of

all events maintaining their hypocentral coordinates. This proce-

dure safeguards the statistical properties of data separately for time

and space, but it destroys the mutual connections. The result shows

(Fig. 5) that all patterns vanish, evidencing constant high values of

dt at all distances and time intervals. The experimental result of

the reshuffling procedure closely confirms the theoretical predic-

tion (eq. 6). Under the assumption of the complete absence of any

mutual correlations between space and time, dt values at distances

less than maximum distance are only the result of a random under-

sampling, hence identical to dt of the total distribution (Fig. 1). The

not-coloured area on left-hand side down corner of Fig. 5, reflects

the absence of a minimum amount of earthquake pairs (fixed, as in

Fig. 4, to five non-cumulated pairs) necessary to a reliable calcula-

tion of Cc (r, τ ). In fact, the reshuffling procedure has lowered the

probability of finding two earthquakes near in space and close in

time.

The radical difference between dt calculated on real and reshuffled

data demands further interpretation of the clustering domain. The

transition from low to high dt is not abrupt and poses the question of

how to set a separation limit. To this purpose, we produced a random

global catalogue with the same number of events as the real one,

but with randomly distributed time and space occurrence. For space

we considered a uniform distribution of points on a sphere with

random depth in the range 0–700 km. For time we assigned to each

event a random occurrence inside the time span of the catalogue. As

expected, all dt values are very near 1, with average dt = 0.99 and

standard deviation σ = 0.10. Since approximately 98 per cent of all

data have dt ≥ 0.8, it is reasonable to assume this value as a threshold

value above which the catalogue is characterized by random time

occurrences.

The limit value dt = 0.8 also separates approximately 98 per cent

of time correlation dimension data obtained with the reshuffled seis-

micity (Fig. 5). Thus we can state, with sufficient confidence, that

all values dt > 0.8 obtained with real seismicity (Fig. 4) represent a

realization of a time random process with independent spatial and

temporal occurrences. Note the very gradual transition from high

to low dt values determining the absence of a clear boundary. Our

previous statistical test was able to discriminate the random domain,

but there is no univocal, objective reference value to separate a clus-

tering domain. We can indicate dt ≤ 0.5 as values corresponding to

a sensible clustering and 0.5 < dt < 0.8 as a transition zone where

the interpretation is more questionable. A detailed analysis of dt =
0.5 boundary is shown in Fig. 6. In the time range 10–1000 d, the

boundary decays as a power law: r ∝ τ−α with α = 0.6. The whole

transition zone follows the same behaviour, confirming the general

character of the decay. In fact, even for different dt boundaries (0.4,

0.6 and 0.8), the power-law behaviour is maintained (Fig. 7).

It is important to analyse if there is a variation of the cluster-

ing domain in relation to the magnitude. To check this hypothesis,

the magnitude of all ith events in the catalogue, referring to eq. (5)

was limited, respectively, in the ranges 5.0–5.5, 5.5–6.0 and 6.0–6.5

while the jth events maintained the M ≥ 5.0 catalogue threshold

for all different tests. Note that jth events can have a larger magni-

tude than the respective band-limited ith event: the aim is to study

the influence of each event on the subsequent ones. Results are

shown in Fig. 7: increasing the magnitude, all three dt boundaries

(0.4, 0.6 and 0.8) migrate to greater distances. This result might be

Figure 5. Local slopes of time correlation dimension dt (r, τ ) (in colour; white squares correspond to insufficient earthquake couple number) and space–time

combined correlation integral Cc (r, τ ) (dark contour lines) for reshuffled catalogue.
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Figure 6. The value dt = 0.5 has been chosen to represent the limit between

time clustering (lower left-hand side) and time randomness (upper right-hand

side, see Fig. 4). Dashed line is the linear fit in time range 10–1000 d.

Figure 7. Space–time variation of some dt limits as function of magnitude

of the reference i event. The colours correspond to different dt values: blue

for dt = 0.4, green for dt = 0.6 and red for dt = 0.8; line style denotes

magnitude interval: dashed line, 5.0 ≤mb < 5.5; solid line 5.5 ≤mb < 6.0

and bold solid line, 6.0 ≤mb < 6.5.

influenced by the reduced number of i events in a higher magni-

tude range. To exclude this possibility, we repeated the analysis on

the whole catalogue (M ≥ 5.0) randomly, reducing the number of

i events, matching in turn the number corresponding to the three

magnitude classes. The resulting boundaries, displayed in Fig. 8,

are coincident for the same dt: it follows that earthquake number

does not significantly influence the pattern. The enlargement of the

time clustering domain in function of magnitude is probably linked

with the changing proportion between the number of main and af-

tershocks with the increase of ith event magnitude.

To test further the general stability of the results with respect to

the number of data, the global catalogue has been reduced to one

tenth of the events randomly chosen (to reduce both i and j events).

The dt average of ten independent realizations is displayed in

Fig. 9, showing that the result is very similar to that obtained using

the whole data set (Fig. 4).

Figure 8. Space–time variation of the dt limits shown in Fig. 7 after random

reduction of the number of i events independently from the magnitude (line

colours and styles as in Fig. 7).

The power law of the time clustering boundary appears to be a

stable characteristic for a wide range of dt values. From Figs 7 to

9, it results the permanence of the behaviour in the time span 10–

1000 d with α ≈ 0.6. At very short time intervals, the clustering do-

main is more variable. Low dt limits (0.4–0.5) show a trend opposite

to the previous one, displaying an increasing of distance trough time.

This suggests a peculiar influence of the sequence during the first

day after the parent shock occurrence.

The real difference between results obtained with the combined

correlation integral (eq. 7) and time fractal dimension as defined by

eq. (2) is the highlighting of the temporal clustering behaviour at

short interdistances. It is interesting to note that this clustering has

variable limits over time, depicting an evolution probably related to

the sequence generated by each event.

5 S PA C E C O R R E L AT I O N D I M E N S I O N

The space correlation dimension ds is obtained deriving the com-

bined correlation integral Cc with respect to interdistances r (eq. 8).

Its behaviour for global seismicity is shown in Fig. 10. The pattern

of d s is quite different from that of dt (Fig. 4): this is no surprise be-

cause these are two completely different aspects of seismicity. The

fact that both quantities vary as a function of space and time is due

to the intrinsic complexity of the process. It appears evident that the

pattern of ds values is much more articulated than the simple spatial

fractal dimension calculated following eq. (4). In fact, the resulting

bi-valued behaviour (Fig. 2), evidenced by neglecting time intervals,

is represented now as the particular endpoint case at the right-hand

end of the plot in Fig. 10.

Dimension values, for this case, can range from 0 to 3, because

hypocentres are embedded in a 3-D space. Actually ds does not

reach the value of 3 for two intrinsic reasons: first, global seismic-

ity is depth limited, being forced by brittle rheology of the crust

into the first few hundreds of kilometres: this dimension is small if

compared with the whole latitude and longitude extension; second,

seismicity tends to be located on planar features such as seismo-

genic faults, or linear patterns as plate boundaries. The effects of

these geophysical factors result in lowering of hypocentre dimen-

sion, which is confined to a value lower than 2.2. Larger values

C© 2008 The Authors, GJI, 173, 932–941
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Figure 9. Mean dt values obtained from 10 independent realization of a reduced seismic catalogue; for every realization 10 per cent of total data were retained.

Figure 10. Local slopes of space correlation dimension ds (r, τ ) for global seismicity (in colour). Dark contour lines represent the space–time combined

correlation integral Cc (r, τ ). White squares correspond to a number of earthquake couples less then five.

(1.5 < ds < 2) in Fig. 10 are found at short interdistances

(10–20 km); values near 2 indicate that hypocentres at this scale

are embedded on simple surfaces. A large domain of ds < 1 is

located at bigger distances and time intervals less than 100 d.

This is due to the low number of event couples inside this range

(but higher than the necessary minimum amount to guarantee the

calculation of ds): inside this space–time domain, seismicity is

not diffused, but is structured in isolated sequences. Within time

intervals longer than 100 d, there is another domain of ds values

around 1, reflecting a distribution of points over linear structures.

C© 2008 The Authors, GJI, 173, 932–941
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Figure 11. Local slopes of space correlation dimension ds (r, τ ) (in colour) and space–time combined correlation integral Cc (r, τ ) (dark contour lines) for

reshuffled catalogue. White squares correspond to a number of earthquake couples less then five.

The latter is placed prevalently on long distances and over long time

intervals and is probably due to the presence of plate boundaries

that, at these scales, can be approximated to simple lines.

Even in this case, we wanted to test the goodness of the results

applying the same analysis on the reshuffled catalogue. The resulting

plot (Fig. 11) shows that the non-combined statistical properties

of data are not sufficient to produce the clustering domains, but

a real connection between space and time is needed. Similarly to

dt behaviour of the reshuffled catalogue for which there was not

difference of values at different distances, ds has the same value for

all time intervals, being nothing more that a random undersampling

of the whole data set (Fig. 2).

Short interdistances in Fig. 10 are certainly influenced by local-

ization error. In fact, it has been experimentally proven that noise

increases the fractal dimension of a data set (Ben-Mizrachi et al.
1984). In case of sole influence of localization error, the limit of

high ds should be independent from intertime; but it clearly appears

that, increasing the time interval, values of high ds can be found

up to greater distances, suggesting a physical process. For example,

arbitrarily choosing ds = 1 as the limit value between high d s and

space clustering (Fig. 12), a linear fit in the log–log plot describes

well the power-law increase. Least-squares fit inside time interval

2.4 hr to 100 d is

log r = 0.09 log τ + 1.5. (9)

Consider that the importance of the result is not due to the specific

values of coefficients but to the evidence of a specific relatively high

valued ds domain expanding in time; moreover, after choosing other

threshold values (0.7 ≤ ds ≤ 1.3), the resulting fit becomes very

similar to eq. (9). As this ds domain pertains to very short distances,

we suppose that it is linked to the hypocentre distribution inside the

seismogenic zone.

Over this border the low ds domain gives a quantification of the

clustering of the set of seismic zones.

Due to the presence of the localization error at these short dis-

tances and to the scarce reliability of high magnitude estimates, we

chose to avoid to study the variation of eq. (9) in respect to the

earthquake magnitude.

We have to stress that the way we followed to calculate hypocentral

distances has a minimum influence on the results. In fact, using other

distances definitions, as the simple surface epicentral distance (Tosi

et al. 2004), all shown analyses give very similar outcome.

6 D I S C U S S I O N

The introduction of the combined correlation integral (eq. 5) with its

related ds and dt extends and completes the meaning of correlation

integral applied separately in space and time to a distribution of

seismic events. Figs 4 and 10 show that non-random patterns appear

when space and time are analysed in a combined way. The results

show a statistical property of the global seismicity of medium-high

magnitude, which can be interpreted as an average behaviour of

seismic events following each earthquake. Basically there are two

different and independent domains, conceptually well separated:

a domain of low dt values, showing that time clustering spatially

shrinks in time, and a domain of high ds, acting at short distances

and slowly expanding in time. Now we will discuss this behaviour

in greater detail.

After the occurrence of an event, there is a space–time domain

inside which the subsequent events are temporally clustered (Fig. 4).

Inside this domain the seismic sequences drive temporal occurrences

and their behaviour is still recognizable. High dt values show that

there are spatial distances and temporal intervals in which seismic

occurrences result to be random. The reason lies in the temporal
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Figure 12. Time intervals τ and interdistances r for which ds = 1.0, representing the limit between space clustering (upside) and higher values of ds (downward,

see Fig. 10) corresponding to dimension of a line up to that of a plane. In the time range from 2.4 hr to 100 d, least-square fit of points in log–log scale results

in the line of equation log r = 0.09 log τ + 1.5.

overlapping of a sufficient number of independent sequences: this

hides the underlying local time clustering.

The pattern of clustering sequences can be clearly delineated

because our method shows an averaged behaviour of all possible

sequences stacked together. Another reason is the low influence of

background seismicity due to the high threshold magnitude of the

catalogue. Our analysis indicates that the spatial limit of the temporal

clustering domain increases with magnitude and shrinks over time

following a power law (Fig. 7). This result clarifies the important

role of the ranges considered in a seismic catalogue. Depending on

the spatial or temporal extension of the catalogue, the statistics of

the temporal occurrences will be different.

The results from the analysis of the space correlation dimension

ds reveals the presence of a space clustering of hypocentres for dis-

tances greater than 40 km and for time intervals less than 1 yr. For

longer time intervals, the disappearance of spatial clustering reveals

the seismic structures related to pre-existing tectonic settings, such

as plate boundaries; after a sufficiently long time evolution, seis-

micity will tend to fill these seismic structures up to dimensions of

thousands of kilometres. At short distances, ds values mark clearly

the presence of a zone, around each source, where hypocentres are

not space clustered. The pairs of events, belonging to this domain,

are characterized by time clustering, as all corresponding r and τ are

below the limit depicted in Fig. 6. Events occurring in the 3 months

after a reference earthquake within distances of 20–40 km from it

are probably located on the same fault plane or in its immediate

vicinity. We call them ‘afterevents’ following Marsan et al. (1999)

because, in our approach, any earthquake (of magnitude greater than

5) can be the reference one, not only the main shock. From Fig. 12

it results that the size of the ‘afterevent’ zone slowly increases with

time, following the relation (9). The limit ds = 1 chosen may appear

arbitrary, but changing it around this value gives fitting relations

very similar to (9). The exponent of the corresponding power law

(r ∝ τ 0.1) is very low: this allows for the possibility that data could

be equally well fitted with a logarithmic relation. Several authors,

using different methods, have noted an expansion of the aftershock

area. Tajima & Kanamori (1985) evidenced a general increase of

the area bounded by fixed threshold levels of seismic energy flux

after a main shock, noting that in some cases this expansion is very

slow. Recently Helmstetter et al. (2003) found a very weak diffusion

of seismic activity in recognized sequences. Different approaches

where used by Marsan et al. (2000), Marsan & Bean (2003), Huc

& Main (2003) and McKernon & Main (2005). All of them consid-

ered the behaviour of all earthquake pairs. In particular, Marsan et al.
(2000) and Marsan & Bean (2003) focused on the diffusion of time-

correlated events normalized with the mean activity considered as

background. Huc & Main (2003) corrected mean distances of seis-

mic events using a reshuffled catalogue, whereas McKernon & Main

(2005) involved in the normalization process of both the increasing

surface area and event distances from a random catalogue. All of

them describe the migration by a law of the form d̄(t) ∝ t H , where

d(t) is the mean distance between the main event and aftershocks

occurring after time t, with an exponent H < 0.5 corresponding

to a subdiffusive process. Godano & Pingue (2005) obtained sim-

ilar results by measuring the increase of the spatial jump dividing

each earthquake pair compared with their time interval. Despite the

extreme difference among methods applied in the cited papers and

our approach—which evaluates time variations of a short range area

of homogeneous value of ds and does not consider the rate or the

probability of aftershocks occurrence—it is interesting to note that,

inside the same time intervals and spatial ranges, there is the in-

crease of an area following the same general law with exponent H
of the same order.

7 C O N C L U S I O N S

With the introduction of the combined method of analysis, we ex-

tend and complete the information given by the correlation integral

analysis as applied to seismicity. Interesting behaviours can be ev-

idenced while they remained otherwise hidden when their space

and timescale invariance were analysed separately. The results of

our analysis show clearly specific seismicity patterns. In fact, all

events concurred to the same result after having performed a sort

of stacking procedure. The main result regarding time evolution

is the statistical characterization of seismic activity. The apparent

disagreement between the random time behaviour showed by cor-

relation integral analysis applied to the global catalogue and the

clear existence of seismic sequences is clarified by the results of the

space–time combined analysis. The random character stems from

the superimposition of several sequences over a sufficiently large

area. In fact in a large area seismicity saturates time dimension

giving, as result, a homogeneous random behaviour. This implies
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the great influence of spatial extension and time span of a seismic

catalogue on its statistical properties.

Concerning spatial domain, it is worth to note a space clustering

for distances longer than 20–40 km. An inner zone of non-clustered

‘afterevents’, probably connected to the same seismogenic struc-

ture, is slowly increasing in time, in agreement with subdiffusion

evidenced by several authors.

Variations of the limiting distances of clustering behaviour and

‘afterevent’ zones are indicated, respectively, by the general experi-

mental relations r ∝ τ−α and r ∝ τβ (eq. 9). Specific distance values

are dependent on the magnitude of the reference event and on the

(partly arbitrary) choice of limiting values of dt and ds. This work is

intended to give statistical indications of the intertwining between

space and time dynamics of global seismicity.
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